
Research Motivation

Author Paper

IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference
using System Stack Traces

Chung Hwan Kim, Junghwan Rhee*, Hui Zhang*, Nipun Arora*, Guofei Jiang*, Xiangyu Zhang, Dongyan Xu
Purdue University and CERIAS, NEC Laboratories America*

Motivation IntroPerf Architecture

System
Stack
Traces

Function
Latency

Inference

Dynamic
Calling

Context Tree

Performance-
annotated

Calling
Context
Ranking

Top-down
Latency

Breakdown

A Report of
Performance

Bugs

●  Performance bugs are frequently observed in
commodity software.

●  Performance bugs may escape the
development stage, and incur problems in a
post-development setting.

●  Commodity software consists of many inter-
dependent components across multiple
system layers.

●  Software is often deployed in a binary format
which lacks source level semantics.

Approach
●  Transparent performance diagnosis with low

overhead in the post-development stage.

●  All components in the vertical software layers
are analyzed with a system-wide scope.

●  OS tracers are commonly used in modern
operating systems for troubleshooting and
advanced OS tracers provide system-wide
stack traces.

●  IntroPerf infers context-sensitive application
performance and analyzes performance bugs
by leveraging stack traces from OS tracers.

Function Latency Inference &
Performance-annotated CCT

System Stack Traces &
Calling Context Tree

Index Path
1
2

root

A

B C

D D

Calling Context Tree

●  A sequence of system stack traces is
converted to a calling context tree.

●  Each call path is indexed using the leaf node
for quick retrieval and computation.

Apache
45464

MySQL
15811

Process
Hacker

3744

7zip
S2

Coverage of Program States
●  The experiments with Apache, MySQL, 7zip

show that stack traces generally cover
5.3~49.4% of dynamic calling contexts and
0.6~31.2% of function instances

●  However, the coverage of calling contexts
and instances for top 1% slowest functions
are respectively 34.7~100% and 16.6~100%
depending on applications.

●  IntroPerf focuses on the functions with large
latencies for performance diagnosis.

Program Bug ID pmin fmin Root Cause Function

Apache 45464 1 36 libapr-1.dll!apr_stat
MySQL 15811 1 0 mysql.exe!strlen

MySQL 49491 3 5 mysqld.exe!
Item_func_sha::val_str

Process
Hacker 3744 1 0 ProcessHacker.exe!

PhSearchMemoryString

7zip S1 11 16 7zFM.exe!
CPanel::RefreshListCtrl

7zip S2 3 16 7zFM.exe!
CPanel::RefreshListCtrl

… … … … …

Visualization of Hot Call Paths Performance Bug Detection

Context-sensitive
Performance Analysis

D D

B C

A
Call Return Function Execution

Inside a Program
(Not Observed)

t1 t2 t3 t4

System Stack
Trace Events

(Observed using
OS tracers)

A

C

A

C

D

A

B

D

A

B

D

A stack trace event Function lifetime
A, B, C, D: Functions of Programs, Libraries, and OS Kernel

Function
instance

Calling
context Inferred latency

A A
B A→B
C A→C
D A→B→D
D A→C→D

t1 t2 t3 t4

A

C

A

C

D

A

B

D

A

B

D

C B

A

D

Call Return Call Return

Call Return

root

A

B C

D D

Performance-annotated
Calling Context Tree

●  Function latencies are inferred based on the
continuity of calling context.

●  Ranking of dynamic calling context with
latency

●  Ranking functions within calling context
with latency

Latency normalization

Top rank
context

Lower rank
context

Low level
system layer
(e.g., syscall)

High level
application

function
(e.g., main)

Top rank
context

Lower rank
context

Low level
system layer
(e.g., syscall)

High level
application

function
(e.g., main)

●  IntroPerf converts system stack traces to a
set of function latencies.

●  Performance bug candidate functions are
ranked regarding dynamic calling contexts.

