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●  Performance bugs are frequently observed in 
commodity software. 

●  Performance bugs may escape the 
development stage, and incur problems in a 
post-development setting. 

●  Commodity software consists of many inter-
dependent components across multiple 
system layers. 

●  Software is often deployed in a binary format 
which lacks source level semantics. 

Approach 
●  Transparent performance diagnosis with low 

overhead in the post-development stage. 

●  All components in the vertical software layers 
are analyzed with a system-wide scope. 

●  OS tracers are commonly used in modern 
operating systems for troubleshooting and 
advanced OS tracers provide system-wide 
stack traces. 

●  IntroPerf infers context-sensitive application 
performance and analyzes performance bugs 
by leveraging stack traces from OS tracers. 
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Calling Context Tree 

●  A sequence of system stack traces is 
converted to a calling context tree. 

●  Each call path is indexed using the leaf node 
for quick retrieval and computation. 
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Coverage of Program States 
●  The experiments with Apache, MySQL, 7zip 

show that stack traces generally cover 
5.3~49.4% of dynamic calling contexts and 
0.6~31.2% of function instances 

●  However, the coverage of calling contexts 
and instances for top 1% slowest functions 
are respectively 34.7~100% and 16.6~100% 
depending on applications. 

●  IntroPerf focuses on the functions with large 
latencies for performance diagnosis. 

Program Bug ID pmin  fmin Root Cause Function 

Apache 45464 1 36 libapr-1.dll!apr_stat 
MySQL 15811 1 0 mysql.exe!strlen 

MySQL 49491 3 5 mysqld.exe! 
Item_func_sha::val_str 

Process
Hacker 3744 1 0 ProcessHacker.exe! 

PhSearchMemoryString 

7zip S1 11 16 7zFM.exe! 
CPanel::RefreshListCtrl 

7zip S2 3 16 7zFM.exe! 
CPanel::RefreshListCtrl 
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A stack trace event  Function lifetime 
A, B, C, D: Functions of Programs, Libraries, and OS Kernel 
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●  Function latencies are inferred based on the 
continuity of calling context. 

●  Ranking of dynamic calling context with 
latency 

●  Ranking functions within calling context 
with latency 
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●  IntroPerf converts system stack traces to a 
set of function latencies. 

●  Performance bug candidate functions are 
ranked regarding dynamic calling contexts. 


