
TZ-DATASHIELD:
Automated Data Protection for Embedded

Systems via Data-Flow-Based
Compartmentalization

Zelun Kong1, Minkyung Park1, Le Guan2, Ning Zhang3, Chung Hwan Kim1

1University of Texas at Dallas
2University of Georgia

3Washington University in St. Louis

Data Security of MCU

Data Security of MCU

Microcontroller units are used in critical fields

Data Security of MCU

Microcontroller units are used in critical fields
• Healthcare

Data Security of MCU

Microcontroller units are used in critical fields
• Healthcare
• Industrial automation

Data Security of MCU

Microcontroller units are used in critical fields
• Healthcare
• Industrial automation
• Autonomous driving vehicles

Data Security of MCU

Microcontroller units are used in critical fields
• Healthcare
• Industrial automation
• Autonomous driving vehicles

MCU

RTOS

Variable

VariableVariable

Privileged Software

Application

Sensor

Actuator

…

Data Security of MCU

Microcontroller units are used in critical fields
• Healthcare
• Industrial automation
• Autonomous driving vehicles

MCU

RTOS

Variable

VariableVariable

Privileged Software

Application

Sensor

Actuator

…

Steal

Data Security of MCU

Microcontroller units are used in critical fields
• Healthcare
• Industrial automation
• Autonomous driving vehicles

MCU

RTOS

Variable

VariableVariable

Privileged Software

Application

Sensor

Actuator

…

Steal

Manipulate

Data Security of MCU

Microcontroller units are used in critical fields
• Healthcare
• Industrial automation
• Autonomous driving vehicles

MCU

RTOS

Variable

VariableVariable

Privileged Software

Application

Sensor

Actuator

…

Integrity

Confidentiality

Protection against Strong Adversaries

MCU

RTOS MPU

Variable

VariableVariable

Privileged Software

Application

Sensor

Actuator

…

Protection against Strong Adversaries

MCU

RTOS MPU

Variable

VariableVariable

Privileged Software

Application

Sensor

Actuator

…

Memory Protection Unit (MPU):

Protection against Strong Adversaries

MCU

RTOS MPU

Variable

VariableVariable

Privileged Software

Application

Sensor

Actuator

…

Memory Protection Unit (MPU):
• Hardware extension: protect memory regions by defining access permissions

Protection against Strong Adversaries

Memory Protection Unit (MPU):
• Hardware extension: protect memory regions by defining access permissions

MCU

RTOS MPU

Variable

VariableVariable

Privileged Software

Application

Sensor

Actuator

…

Protection against Strong Adversaries

Memory Protection Unit (MPU):
• Hardware extension: protect memory regions by defining access permissions
• Existing MPU-based protection is ineffective against strong adversaries

MCU

RTOS MPU

Variable

VariableVariable

Privileged Software

Application

Sensor

Actuator

…

Strong
Adversary

Protection against Strong Adversaries

MCU

RTOS MPU

Variable

VariableVariable

Privileged Software

Application

Sensor

Actuator

…

Memory Protection Unit (MPU):
• Hardware extension: protect memory regions by defining access permissions
• Existing MPU-based protection is ineffective against strong adversaries
• MPU itself needs to be configured in privileged mode

Strong
Adversary

Protection against Strong Adversaries

MCU

RTOS MPU

Variable

VariableVariable

Privileged Software

Application

Sensor

Actuator

…

CVE-2021-43997
…

Memory Protection Unit (MPU):
• Hardware extension: protect memory regions by defining access permissions
• Existing MPU-based protection is ineffective against strong adversaries
• MPU itself needs to be configured in privileged mode

Strong
Adversary

Protection against Strong Adversaries

MCU

RTOS MPU

Variable

VariableVariable

Privileged Software

Application

Sensor

Actuator

…

CVE-2021-43997
…

Memory Protection Unit (MPU):
• Hardware extension: protect memory regions by defining access permissions
• Existing MPU-based protection is ineffective against strong adversaries
• MPU itself needs to be configured in privileged mode

Strong
Adversary

Protection against Strong Adversaries

MCU

RTOS MPU

Variable

VariableVariable

Privileged Software

Application

Sensor

Actuator

…

CVE-2021-43997
…

Steal

Manipulate

Memory Protection Unit (MPU):
• Hardware extension: protect memory regions by defining access permissions
• Existing MPU-based protection is ineffective against strong adversaries
• MPU itself needs to be configured in privileged mode

Strong
Adversary

ARM TrustZone for MCU Data Protection

ARM TrustZone for MCU Data Protection

Goal: protect integrity and confidentiality of data in MCU against strong
adversaries using ARM TrustZone

ARM TrustZone for MCU Data Protection

Goal: protect integrity and confidentiality of data in MCU against strong
adversaries using ARM TrustZone

ARM TrustZone

AppSecure App

OS
Secure

Peripherals Peripherals

Secure World

TrustZone for ARMv8-M

Normal World

ARM TrustZone for MCU Data Protection

Goal: protect integrity and confidentiality of data in MCU against strong
adversaries using ARM TrustZone

ARM TrustZone
• The secure world of ARM TrustZone for MCU provides a Trusted Execution Environment

AppSecure App

OS
Secure

Peripherals Peripherals

Secure World

TrustZone for ARMv8-M

Normal World

ARM TrustZone for MCU Data Protection

Goal: protect integrity and confidentiality of data in MCU against strong
adversaries using ARM TrustZone

ARM TrustZone
• The secure world of ARM TrustZone for MCU provides a Trusted Execution Environment
• Protect against strong adversaries in normal world

AppSecure App

OS
Secure

Peripherals Peripherals

Secure World

TrustZone for ARMv8-M

Allowed Disallowed

Normal World

Overview of TZ-DATASHIELD

Overview of TZ-DATASHIELD

Overview of TZ-DATASHIELD

Developer

Code Annotation

Source Code

• Annotate sensitive data (variables and peripherals)

Overview of TZ-DATASHIELD

Developer

Code Annotation

Source Code

Compartment
Identification

Program slicing on sensitive data

• Annotate sensitive data (variables and peripherals)
• Identify compartments based on data flow of sensitive data

Overview of TZ-DATASHIELD

Developer

Code Annotation

Source Code

Compartment
Identification

Program slicing on sensitive data

Instrumentation

• Annotate sensitive data (variables and peripherals)
• Identify compartments based on data flow of sensitive data
• Instrument LLVM IR code to isolate compartments

Overview of TZ-DATASHIELD

Developer

Code Annotation

Source Code

Compartment
Identification

Program slicing on sensitive data

Instrumentation

Application C1

RTOS

C2

Security Monitor

Secure WorldNormal World

• Annotate sensitive data (variables and peripherals)
• Identify compartments based on data flow of sensitive data
• Instrument LLVM IR code to isolate compartments
• Enforce isolation by security monitor during runtime

Overview of TZ-DATASHIELD

Developer

Code Annotation

Source Code

Compartment
Identification

Program slicing on sensitive data

Instrumentation

Application C1

RTOS

C2

Security Monitor

Secure WorldNormal World

• Annotate sensitive data (variables and peripherals)
• Identify compartments based on data flow of sensitive data
• Instrument LLVM IR code to isolate compartments
• Enforce isolation by security monitor during runtime

Overview of TZ-DATASHIELD

Developer

Code Annotation

Source Code

Compartment
Identification

Program slicing on sensitive data

Instrumentation

Application C1

RTOS

C2

Security Monitor

Secure WorldNormal World

• Annotate sensitive data (variables and peripherals)
• Identify compartments based on data flow of sensitive data
• Instrument LLVM IR code to isolate compartments
• Enforce isolation by security monitor during runtime

New challenges:
1. Compartment granularity too coarse- or fine-grained
2. Lack of intra-TEE isolation
3. Protection on shared data/peripheral between compartments

Challenge 1: Compartment Granularity

Challenge 1: Compartment Granularity

Existing MPU-based compartmentalization approaches

Challenge 1: Compartment Granularity

Existing MPU-based compartmentalization approaches
• Function-level: Fine-grained isolation per function [SEC’18]

Challenge 1: Compartment Granularity

Existing MPU-based compartmentalization approaches
• Function-level: Fine-grained isolation per function [SEC’18]

USART0

irq_handler()

key_stored

check()

match()

unlock()

Fine-grained
Compartment

Challenge 1: Compartment Granularity

Existing MPU-based compartmentalization approaches
• Function-level: Fine-grained isolation per function [SEC’18]

USART0

irq_handler()

key_stored

check()

match()

unlock()

Fine-grained
Compartment

Frequent
switch

Challenge 1: Compartment Granularity

Existing MPU-based compartmentalization approaches
• Function-level: Fine-grained isolation per function [SEC’18]
• RTOS thread-level: Compartmentalization based on RTOS

threads [SP’23, NDSS’18]
USART0

irq_handler()

key_stored

check()

match()

unlock()

Fine-grained
Compartment

Frequent
switch

Challenge 1: Compartment Granularity

Existing MPU-based compartmentalization approaches
• Function-level: Fine-grained isolation per function [SEC’18]
• RTOS thread-level: Compartmentalization based on RTOS

threads [SP’23, NDSS’18]
• File/component-level: Isolation by
 software components like libraries
 and peripheral drivers [SP’23]

USART0

irq_handler()

key_stored

check()

match()

unlock()

Fine-grained
Compartment

Frequent
switch

Challenge 1: Compartment Granularity

Existing MPU-based compartmentalization approaches
• Function-level: Fine-grained isolation per function [SEC’18]
• RTOS thread-level: Compartmentalization based on RTOS

threads [SP’23, NDSS’18]
• File/component-level: Isolation by
 software components like libraries
 and peripheral drivers [SP’23]

USART0

check()

match()

key_stored

…

…

Coarse-grained
Compartment

USART0

irq_handler()

key_stored

check()

match()

unlock()

Fine-grained
Compartment

Frequent
switch

Challenge 1: Compartment Granularity

Existing MPU-based compartmentalization approaches
• Function-level: Fine-grained isolation per function [SEC’18]
• RTOS thread-level: Compartmentalization based on RTOS

threads [SP’23, NDSS’18]
• File/component-level: Isolation by
 software components like libraries
 and peripheral drivers [SP’23]

USART0

check()

match()

key_stored

…

…

Coarse-grained
Compartment

USART0

irq_handler()

key_stored

check()

match()

unlock()

Fine-grained
Compartment

Frequent
switch

Challenge 1: Compartment Granularity

Existing MPU-based compartmentalization approaches
• Function-level: Fine-grained isolation per function [SEC’18]
• RTOS thread-level: Compartmentalization based on RTOS

threads [SP’23, NDSS’18]
• File/component-level: Isolation by
 software components like libraries
 and peripheral drivers [SP’23]

USART0

check()

match()

key_stored

…

…

Coarse-grained
Compartment

USART0

irq_handler()

key_stored

check()

match()

unlock()

Fine-grained
Compartment

Leakage

Frequent
switch

Challenge 1: Compartment Granularity

Existing MPU-based compartmentalization approaches
• Function-level: Fine-grained isolation per function [SEC’18]
• RTOS thread-level: Compartmentalization based on RTOS

threads [SP’23, NDSS’18]
• File/component-level: Isolation by
 software components like libraries
 and peripheral drivers [SP’23]

USART0

check()

match()

key_stored

…

…

Coarse-grained
Compartment

USART0

irq_handler()

key_stored

check()

match()

unlock()

Fine-grained
Compartment

Leakage

Frequent
switch

Not designed for data protection:

Challenge 1: Compartment Granularity

Existing MPU-based compartmentalization approaches
• Function-level: Fine-grained isolation per function [SEC’18]
• RTOS thread-level: Compartmentalization based on RTOS

threads [SP’23, NDSS’18]
• File/component-level: Isolation by
 software components like libraries
 and peripheral drivers [SP’23]

USART0

check()

match()

key_stored

…

…

Coarse-grained
Compartment

USART0

irq_handler()

key_stored

check()

match()

unlock()

Fine-grained
Compartment

Leakage

Frequent
switch

Not designed for data protection:
• Either too coarse- or fine-grained

Challenge 1: Compartment Granularity

Existing MPU-based compartmentalization approaches
• Function-level: Fine-grained isolation per function [SEC’18]
• RTOS thread-level: Compartmentalization based on RTOS

threads [SP’23, NDSS’18]
• File/component-level: Isolation by
 software components like libraries
 and peripheral drivers [SP’23]

USART0

check()

match()

key_stored

…

…

Coarse-grained
Compartment

USART0

irq_handler()

key_stored

check()

match()

unlock()

Fine-grained
Compartment

Not designed for data protection:
• Either too coarse- or fine-grained

Leakage

Frequent
switch

Our solution: Sensitive Data Flow (SDF)
Compartmentalization

Solution 1: Sensitive Data Flow-based Compartment

Solution 1: Sensitive Data Flow-based Compartment

Sensor
Actuator

Global
Variable

Annotated

Solution 1: Sensitive Data Flow-based Compartment

Backward Slicing:
• Tracks all instructions and data objects that influence sensitive data
• Ensures integrity

Global
Variable

Annotated

Sensor
Actuator

Solution 1: Sensitive Data Flow-based Compartment

Backward Slicing:
• Tracks all instructions and data objects that influence sensitive data
• Ensures integrity

Global
Variable

Annotated

Sensor
Actuator

Solution 1: Sensitive Data Flow-based Compartment

Backward Slicing:
• Tracks all instructions and data objects that influence sensitive data
• Ensures integrity

Forward slicing:
• Tracks all instructions and data objects that are influenced by sensitive data
• Ensures confidentiality

Global
Variable

Annotated

Sensor
Actuator

Solution 1: Sensitive Data Flow-based Compartment

Backward Slicing:
• Tracks all instructions and data objects that influence sensitive data
• Ensures integrity

Forward slicing:
• Tracks all instructions and data objects that are influenced by sensitive data
• Ensures confidentiality

Global
Variable

Shared
Data

Sensor
Actuator

Challenge 2: Lack of Intra-TEE Isolation

Challenge 2: Lack of Intra-TEE Isolation

One compartment can access another and even security monitor

C2

Challenge 2: Lack of Intra-TEE Isolation

One compartment can access another and even security monitor
• Steal/manipulate sensitive data
• Bypass security checks

Application

RTOS

Secure WorldNormal World

C1

Sensor Actuator

Security Monitor

Solution 2: Software Fault Isolation

Software Fault Isolation (SFI):

Solution 2: Software Fault Isolation

Software Fault Isolation (SFI):
• Indirect control transfer

Solution 2: Software Fault Isolation

Software Fault Isolation (SFI):
• Indirect control transfer

Solution 2: Software Fault Isolation

int func1() {
 fp = func2; // function pointer

 var = (/fp)(arg1, arg2);
}

Software Fault Isolation (SFI):
• Indirect control transfer
• Indirect memory accesses

Solution 2: Software Fault Isolation

int func1() {
 fp = func2; // function pointer

 var = (/fp)(arg1, arg2);
}

Software Fault Isolation (SFI):
• Indirect control transfer
• Indirect memory accesses

Solution 2: Software Fault Isolation

int func1() {
 fp = func2; // function pointer

 var = (/fp)(arg1, arg2);
}

int global_var;
int func3() {
 int *ptr = &global_var;

 global_var = var;
}

Software Fault Isolation (SFI):
• Indirect control transfer
• Indirect memory accesses

Compile-time instrumentation:
• Add checks before indirect control transfer and memory accesses

Solution 2: Software Fault Isolation

int func1() {
 fp = func2; // function pointer

 var = (/fp)(arg1, arg2);
}

int global_var;
int func3() {
 int *ptr = &global_var;

 global_var = var;
}

Software Fault Isolation (SFI):
• Indirect control transfer
• Indirect memory accesses

Compile-time instrumentation:
• Add checks before indirect control transfer and memory accesses

Solution 2: Software Fault Isolation

int func1() {
 fp = func2; // function pointer
 check(fp);
 var = (/fp)(arg1, arg2);
}

int global_var;
int func3() {
 int *ptr = &global_var;

 global_var = var;
}

Software Fault Isolation (SFI):
• Indirect control transfer
• Indirect memory accesses

Compile-time instrumentation:
• Add checks before indirect control transfer and memory accesses

Solution 2: Software Fault Isolation

int func1() {
 fp = func2; // function pointer
 check(fp);
 var = (/fp)(arg1, arg2);
}

int global_var;
int func3() {
 int *ptr = &global_var;
 check(ptr);
 global_var = var;
}

Software Fault Isolation (SFI):
• Indirect control transfer
• Indirect memory accesses

Compile-time instrumentation:
• Add checks before indirect control transfer and memory accesses

Runtime enforcement by the security monitor:
• Isolating accesses within the compartment

Solution 2: Software Fault Isolation

int func1() {
 fp = func2; // function pointer
 check(fp);
 var = (/fp)(arg1, arg2);
}

int global_var;
int func3() {
 int *ptr = &global_var;
 check(ptr);
 global_var = var;
}

Challenge 3: Shared Data/Peripheral Protection

Application

RTOS

Secure WorldNormal World

C1 C2

Security Monitor

Challenge 3: Shared Data/Peripheral Protection

• Compartments may share data/peripherals

Application

RTOS

Secure WorldNormal World

C1 C2

Security Monitor

Challenge 3: Shared Data/Peripheral Protection

• Compartments may share data/peripherals

Application

RTOS

Secure WorldNormal World

C1 C2

Security Monitor

Shared Data

Challenge 3: Shared Data/Peripheral Protection

• Compartments may share data/peripherals
• Adversaries may exploit this to illegally access other compartments

Application

RTOS

Secure WorldNormal World

C1 C2

Security Monitor

Shared Data

Challenge 3: Shared Data/Peripheral Protection

• Compartments may share data/peripherals
• Adversaries may exploit this to illegally access other compartments

Application

RTOS

Secure WorldNormal World

C1 C2

Security Monitor

Shared Data

Challenge 3: Shared Data/Peripheral Protection

• Compartments may share data/peripherals
• Adversaries may exploit this to illegally access other compartments

Application

RTOS

Secure WorldNormal World

C1 C2

Security Monitor

Shared Data

Challenge 3: Shared Data/Peripheral Protection

• Compartments may share data/peripherals
• Adversaries may exploit this to illegally access other compartments

Application

RTOS

Secure WorldNormal World

C1 C2

Security Monitor

Shared Data

Challenge 3: Shared Data/Peripheral Protection

• Compartments may share data/peripherals
• Adversaries may exploit this to illegally access other compartments

Application

RTOS

Secure WorldNormal World

C1 C2

Security Monitor

Shared Data

Solution 3: CFI/DFI for Shared Data/Peripheral

Solution 3: CFI/DFI for Shared Data/Peripheral

Control/Data flow integrity (CFI+DFI)
• Control/data flow leading to shared data

Solution 3: CFI/DFI for Shared Data/Peripheral

Control/Data flow integrity (CFI+DFI)
• Control/data flow leading to shared data

int func1(arg) {
 ...

 global_var = arg;
 ...
}

int func2() {
 ...

 var = global_var + 1;
}

Compartment 1 Compartment 2

int global_var;

Shared Data

write read

Solution 3: CFI/DFI for Shared Data/Peripheral

Control/Data flow integrity (CFI+DFI)
• Control/data flow leading to shared data

Compile-time instrumentation:
• Add checks before shared data accesses

int func1(arg) {
 ...

 global_var = arg;
 ...
}

int func2() {
 ...

 var = global_var + 1;
}

Compartment 1 Compartment 2

int global_var;

Shared Data

write read

Solution 3: CFI/DFI for Shared Data/Peripheral

Control/Data flow integrity (CFI+DFI)
• Control/data flow leading to shared data

Compile-time instrumentation:
• Add checks before shared data accesses

int func1(arg) {
 ...
 cfi_dfi();
 global_var = arg;
 ...
}

int func2() {
 ...
 cfi_dfi();
 var = global_var + 1;
}

Compartment 1 Compartment 2

int global_var;

Shared Data

write read

Solution 3: CFI/DFI for Shared Data/Peripheral

Control/Data flow integrity (CFI+DFI)
• Control/data flow leading to shared data

Compile-time instrumentation:
• Add checks before shared data accesses

Runtime enforcement by security monitor:
• When reading data, check that it came from an allowed writing

int func1(arg) {
 ...
 cfi_dfi();
 global_var = arg;
 ...
}

int func2() {
 ...
 cfi_dfi();
 var = global_var + 1;
}

Compartment 1 Compartment 2

int global_var;

Shared Data

write read

Experimental Setup

Experimental Setup

LPCXpresso55S69 development board
• ARM Cortex-M33 processor (Armv8-M)

Experimental Setup

LPCXpresso55S69 development board
• ARM Cortex-M33 processor (Armv8-M)

Evaluated on 12 different bare-metal and RTOS
applications:

• Bare-metal: PinLock, Temp, Accel, Gyro, SD-
FatFS, USBVCom

• RTOS-based: FreeRTOS variants of the above
applications

Experimental Setup

LPCXpresso55S69 development board
• ARM Cortex-M33 processor (Armv8-M)

Evaluated on 12 different bare-metal and RTOS
applications:

• Bare-metal: PinLock, Temp, Accel, Gyro, SD-
FatFS, USBVCom

• RTOS-based: FreeRTOS variants of the above
applications

Other compartmentalization approach
• Thread, function, component

Security Evaluation

Security Evaluation

Baseline: No isolation

Security Evaluation

Baseline: No isolation
Address Space Reduction:

Granularity Compartment Rate

SDF 80.8%

Fine Function 96.2%

Coase
Component 38.4%

Thread 62.7%

Address Space Reduction

Security Evaluation

Baseline: No isolation
Address Space Reduction:

• Achieved average 80.8% reduction

Granularity Compartment Rate

SDF 80.8%

Fine Function 96.2%

Coase
Component 38.4%

Thread 62.7%

Address Space Reduction

Security Evaluation

Baseline: No isolation
Address Space Reduction:

• Achieved average 80.8% reduction
• Average 30% more reduction than coarse-grained

Granularity Compartment Rate

SDF 80.8%

Fine Function 96.2%

Coase
Component 38.4%

Thread 62.7%

Address Space Reduction

Security Evaluation

Baseline: No isolation
Address Space Reduction:

• Achieved average 80.8% reduction
• Average 30% more reduction than coarse-grained

ROP gadgets:

Granularity Compartment Rate

SDF 80.8%

Fine Function 96.2%

Coase
Component 38.4%

Thread 62.7%

Compartment Rate

SDF 88.6%

Function 98.6%

Component 63.1%

Thread 78.5%

Address Space Reduction # ROP Gadgets Reduction

Security Evaluation

Baseline: No isolation
Address Space Reduction:

• Achieved average 80.8% reduction
• Average 30% more reduction than coarse-grained

ROP gadgets:
• Achieved average 80.8% reduction

Granularity Compartment Rate

SDF 80.8%

Fine Function 96.2%

Coase
Component 38.4%

Thread 62.7%

Compartment Rate

SDF 88.6%

Function 98.6%

Component 63.1%

Thread 78.5%

Address Space Reduction # ROP Gadgets Reduction

Security Evaluation

Baseline: No isolation
Address Space Reduction:

• Achieved average 80.8% reduction
• Average 30% more reduction than coarse-grained

ROP gadgets:
• Achieved average 80.8% reduction
• Average 18% more reduction than coarse-grained

Granularity Compartment Rate

SDF 80.8%

Fine Function 96.2%

Coase
Component 38.4%

Thread 62.7%

Compartment Rate

SDF 88.6%

Function 98.6%

Component 63.1%

Thread 78.5%

Address Space Reduction # ROP Gadgets Reduction

Performance Evaluation

Performance Evaluation

Runtime overhead:

Granularity Compartment Rate

SDF 14.7%

Fine Function 64.5%

Coase
Component 12.9%

Thread 12.7%

Runtime Overhead

Performance Evaluation

Runtime overhead:
• Incurs an average 14.7% runtime overhead

Granularity Compartment Rate

SDF 14.7%

Fine Function 64.5%

Coase
Component 12.9%

Thread 12.7%

Runtime Overhead

Performance Evaluation

Runtime overhead:
• Incurs an average 14.7% runtime overhead
• 1.4% compartment switch; 6.3% SFI; 7.0% CFI/DFI

Granularity Compartment Rate

SDF 14.7%

Fine Function 64.5%

Coase
Component 12.9%

Thread 12.7%

Runtime Overhead

Performance Evaluation

Runtime overhead:
• Incurs an average 14.7% runtime overhead
• 1.4% compartment switch; 6.3% SFI; 7.0% CFI/DFI

Memory overhead:
• Incurs an average 31.4% memory overhead

Granularity Compartment Rate

SDF 14.7%

Fine Function 64.5%

Coase
Component 12.9%

Thread 12.7%

Runtime Overhead

SDF Overhead

Security Monitor 16.7 KB

Meta data 136 Bytes

Memory Pool 4 KB

Memory Overhead

Conclusion

Conclusion

• Use ARM TrustZone to protect against strong adversaries

Conclusion

• Use ARM TrustZone to protect against strong adversaries
• TZ-DATASHIELD:

• Compartmentalization: Sensitive data flow
• Intra-TEE isolation: SFI
• Shared data/peripheral protection: CFI/DFI

Conclusion

• Use ARM TrustZone to protect against strong adversaries
• TZ-DATASHIELD:

• Compartmentalization: Sensitive data flow
• Intra-TEE isolation: SFI
• Shared data/peripheral protection: CFI/DFI

• 80.8% address space and 88.6% ROP gadget reductions

Conclusion

• Use ARM TrustZone to protect against strong adversaries
• TZ-DATASHIELD:

• Compartmentalization: Sensitive data flow
• Intra-TEE isolation: SFI
• Shared data/peripheral protection: CFI/DFI

• 80.8% address space and 88.6% ROP gadget reductions
• 14.7% runtime overhead and 31.4% memory overhead

Thanks for listening.
Questions?

Code Artifacts

Protecting IRQ Handlers

• IRQ handlers are also isolated into separate SDF compartments
• Secure Interrupt dispatcher:

• Registered in the interrupt vector table (IVT)
• Intercepts IRQ requests before invoking the actual handler

Comparison with Existing CFI/DFI

Unlike general CFI/DFI that checks universally
Selectively activates CFI/DFI only when accessing shared peripherals or data
Adjustable previous address targets
Lightweight

Annotation

Performance Overhead – CFI/DFI

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8
CFI/DFI Targets

Sensitive Data Flow Function Component Thread

	Default Section
	Slide 1: TZ-DATASHIELD: Automated Data Protection for Embedded Systems via Data-Flow-Based Compartmentalization

	Background
	Slide 2: Data Security of MCU
	Slide 3: Data Security of MCU
	Slide 4: Data Security of MCU
	Slide 5: Data Security of MCU
	Slide 6: Data Security of MCU
	Slide 7: Data Security of MCU
	Slide 8: Data Security of MCU
	Slide 9: Data Security of MCU
	Slide 10: Data Security of MCU

	Strong Adv
	Slide 11: Protection against Strong Adversaries
	Slide 12: Protection against Strong Adversaries
	Slide 13: Protection against Strong Adversaries
	Slide 14: Protection against Strong Adversaries
	Slide 15: Protection against Strong Adversaries
	Slide 16: Protection against Strong Adversaries
	Slide 17: Protection against Strong Adversaries
	Slide 18: Protection against Strong Adversaries
	Slide 19: Protection against Strong Adversaries

	TZ
	Slide 20: ARM TrustZone for MCU Data Protection
	Slide 21: ARM TrustZone for MCU Data Protection
	Slide 22: ARM TrustZone for MCU Data Protection
	Slide 23: ARM TrustZone for MCU Data Protection
	Slide 24: ARM TrustZone for MCU Data Protection

	Overview
	Slide 25: Overview of TZ-DATASHIELD
	Slide 26: Overview of TZ-DATASHIELD
	Slide 27: Overview of TZ-DATASHIELD
	Slide 28: Overview of TZ-DATASHIELD
	Slide 29: Overview of TZ-DATASHIELD
	Slide 30: Overview of TZ-DATASHIELD
	Slide 31: Overview of TZ-DATASHIELD
	Slide 32: Overview of TZ-DATASHIELD

	Challenge 1
	Slide 33: Challenge 1: Compartment Granularity
	Slide 34: Challenge 1: Compartment Granularity
	Slide 35: Challenge 1: Compartment Granularity
	Slide 36: Challenge 1: Compartment Granularity
	Slide 37: Challenge 1: Compartment Granularity
	Slide 38: Challenge 1: Compartment Granularity
	Slide 39: Challenge 1: Compartment Granularity
	Slide 40: Challenge 1: Compartment Granularity
	Slide 41: Challenge 1: Compartment Granularity
	Slide 42: Challenge 1: Compartment Granularity
	Slide 43: Challenge 1: Compartment Granularity
	Slide 44: Challenge 1: Compartment Granularity
	Slide 45: Challenge 1: Compartment Granularity
	Slide 46: Solution 1: Sensitive Data Flow-based Compartment
	Slide 47: Solution 1: Sensitive Data Flow-based Compartment
	Slide 48: Solution 1: Sensitive Data Flow-based Compartment
	Slide 49: Solution 1: Sensitive Data Flow-based Compartment
	Slide 50: Solution 1: Sensitive Data Flow-based Compartment
	Slide 51: Solution 1: Sensitive Data Flow-based Compartment

	Challenge 2
	Slide 52: Challenge 2: Lack of Intra-TEE Isolation
	Slide 53: Challenge 2: Lack of Intra-TEE Isolation
	Slide 54: Challenge 2: Lack of Intra-TEE Isolation
	Slide 55: Solution 2: Software Fault Isolation
	Slide 56: Solution 2: Software Fault Isolation
	Slide 57: Solution 2: Software Fault Isolation
	Slide 58: Solution 2: Software Fault Isolation
	Slide 59: Solution 2: Software Fault Isolation
	Slide 60: Solution 2: Software Fault Isolation
	Slide 61: Solution 2: Software Fault Isolation
	Slide 62: Solution 2: Software Fault Isolation
	Slide 63: Solution 2: Software Fault Isolation
	Slide 64: Solution 2: Software Fault Isolation

	Challenge 3
	Slide 65: Challenge 3: Shared Data/Peripheral Protection
	Slide 66: Challenge 3: Shared Data/Peripheral Protection
	Slide 67: Challenge 3: Shared Data/Peripheral Protection
	Slide 68: Challenge 3: Shared Data/Peripheral Protection
	Slide 69: Challenge 3: Shared Data/Peripheral Protection
	Slide 70: Challenge 3: Shared Data/Peripheral Protection
	Slide 71: Challenge 3: Shared Data/Peripheral Protection
	Slide 72: Challenge 3: Shared Data/Peripheral Protection
	Slide 73: Solution 3: CFI/DFI for Shared Data/Peripheral
	Slide 74: Solution 3: CFI/DFI for Shared Data/Peripheral
	Slide 75: Solution 3: CFI/DFI for Shared Data/Peripheral
	Slide 76: Solution 3: CFI/DFI for Shared Data/Peripheral
	Slide 77: Solution 3: CFI/DFI for Shared Data/Peripheral
	Slide 78: Solution 3: CFI/DFI for Shared Data/Peripheral

	Evaluation
	Slide 79: Experimental Setup
	Slide 80: Experimental Setup
	Slide 81: Experimental Setup
	Slide 82: Experimental Setup
	Slide 83: Security Evaluation
	Slide 84: Security Evaluation
	Slide 85: Security Evaluation
	Slide 86: Security Evaluation
	Slide 87: Security Evaluation
	Slide 88: Security Evaluation
	Slide 89: Security Evaluation
	Slide 90: Security Evaluation
	Slide 91: Performance Evaluation
	Slide 92: Performance Evaluation
	Slide 93: Performance Evaluation
	Slide 94: Performance Evaluation
	Slide 95: Performance Evaluation
	Slide 96: Conclusion
	Slide 97: Conclusion
	Slide 98: Conclusion
	Slide 99: Conclusion
	Slide 100: Conclusion
	Slide 101: Thanks for listening. Questions?
	Slide 102: Protecting IRQ Handlers
	Slide 103: Comparison with Existing CFI/DFI
	Slide 104: Annotation
	Slide 105: Performance Overhead – CFI/DFI

