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Goal: protect integrity and confidentiality of data in MCU against strong 
adversaries using ARM TrustZone

ARM TrustZone
• The secure world of ARM TrustZone for MCU provides a Trusted Execution Environment
• Protect against strong adversaries in normal world
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• Annotate sensitive data (variables and peripherals)
• Identify compartments based on data flow of sensitive data
• Instrument LLVM IR code to isolate compartments
• Enforce isolation by security monitor during runtime

New challenges:
1. Compartment granularity too coarse- or fine-grained
2. Lack of intra-TEE isolation
3. Protection on shared data/peripheral between compartments
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One compartment can access another and even security monitor
• Steal/manipulate sensitive data
• Bypass security checks
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Software Fault Isolation (SFI):
• Indirect control transfer
• Indirect memory accesses

Compile-time instrumentation:
• Add checks before indirect control transfer and memory accesses

Runtime enforcement by the security monitor:
• Isolating accesses within the compartment

Solution 2: Software Fault Isolation

int func1() {
    fp = func2; // function pointer
    check(fp);
    var = (/fp)(arg1, arg2);
}

int global_var;
int func3() {
    int *ptr = &global_var;
    check(ptr);
    global_var = var;
}
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Control/Data flow integrity (CFI+DFI)
• Control/data flow leading to shared data

Compile-time instrumentation:
• Add checks before shared data accesses

Runtime enforcement by security monitor:
• When reading data, check that it came from an allowed writing

int func1(arg) {
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}
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LPCXpresso55S69 development board
• ARM Cortex-M33 processor (Armv8-M)

Evaluated on 12 different bare-metal and RTOS 
applications:

• Bare-metal: PinLock, Temp, Accel, Gyro, SD-
FatFS, USBVCom

• RTOS-based: FreeRTOS variants of the above 
applications

Other compartmentalization approach
• Thread, function, component
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Security Evaluation

Baseline: No isolation
Address Space Reduction:

• Achieved average 80.8% reduction
• Average 30% more reduction than coarse-grained 

# ROP gadgets:
• Achieved average 80.8% reduction
• Average 18% more reduction than coarse-grained 

Granularity Compartment Rate

SDF 80.8%

Fine Function 96.2%

Coase
Component 38.4%

Thread 62.7%
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Performance Evaluation

Runtime overhead:
• Incurs an average 14.7% runtime overhead
• 1.4% compartment switch; 6.3% SFI; 7.0% CFI/DFI

Memory overhead:
• Incurs an average 31.4% memory overhead

Granularity Compartment Rate

SDF 14.7%

Fine Function 64.5%

Coase
Component 12.9%

Thread 12.7%

Runtime Overhead

SDF Overhead

Security Monitor 16.7 KB

Meta data 136 Bytes

Memory Pool 4 KB

Memory Overhead
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Conclusion

• Use ARM TrustZone to protect against strong adversaries
• TZ-DATASHIELD:

• Compartmentalization: Sensitive data flow
• Intra-TEE isolation: SFI
• Shared data/peripheral protection: CFI/DFI

• 80.8% address space and 88.6% ROP gadget reductions 
• 14.7%  runtime overhead and 31.4% memory overhead



Thanks for listening.
Questions?

Code Artifacts



Protecting IRQ Handlers

• IRQ handlers are also isolated into separate SDF compartments
• Secure Interrupt dispatcher:

• Registered in the interrupt vector table (IVT)
• Intercepts IRQ requests before invoking the actual handler



Comparison with Existing CFI/DFI

Unlike general CFI/DFI that checks universally
Selectively activates CFI/DFI only when accessing shared peripherals or data
Adjustable previous address targets
Lightweight



Annotation



Performance Overhead – CFI/DFI
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