
Confidential Execution of Deep Learning Inference at the
Untrusted Edge with ARM TrustZone

Md Shihabul Islam
md.shihabul.islam@utdallas.edu
The University of Texas at Dallas

Richardson, Texas, USA

Mahmoud Zamani
mxz173130@utdallas.edu

The University of Texas at Dallas
Richardson, Texas, USA

Chung Hwan Kim
chungkim@utdallas.edu

The University of Texas at Dallas
Richardson, Texas, USA

Latifur Khan
lkhan@utdallas.edu

The University of Texas at Dallas
Richardson, Texas, USA

Kevin W. Hamlen
hamlen@utdallas.edu

The University of Texas at Dallas
Richardson, Texas, USA

ABSTRACT
This paper proposes a new confidential deep learning (DL) infer-
ence system with ARM TrustZone to provide confidentiality and
integrity of DL models and data in an untrusted edge device with
limited memory. Although ARM TrustZone supplies a strong,
hardware-supported trusted execution environment for protecting
sensitive code and data in an edge device against adversaries, re-
source limitations in typical edge devices have raised significant
challenges for protecting on-device DL requiring large memory
consumption without sacrificing the security and accuracy of the
model. The proposed solution addresses this challenge without
modifying the protected DL model, thereby preserving the original
prediction accuracy. Comprehensive experiments using different
DL architectures and datasets demonstrate that inference services
for large and complex DL models can be deployed in edge devices
with TrustZone with limited trusted memory, ensuring data confi-
dentiality and preserving the original model’s prediction exactness.

CCS CONCEPTS
• Computer systems organization→ Embedded and cyber-
physical systems; • Security and privacy → Software and
application security.

KEYWORDS
Deep Learning, Embedded Device, Trusted Execution Environment

ACM Reference Format:
Md Shihabul Islam, Mahmoud Zamani, Chung Hwan Kim, Latifur Khan,
and Kevin W. Hamlen. 2023. Confidential Execution of Deep Learning In-
ference at the Untrusted Edge with ARM TrustZone. In Proceedings of the
Thirteenth ACM Conference on Data and Application Security and Privacy
(CODASPY ’23), April 24–26, 2023, Charlotte, NC, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3577923.3583648

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0067-5/23/04.
https://doi.org/10.1145/3577923.3583648

1 INTRODUCTION
The ubiquity and proliferation of the Internet of Things (IoT) and
edge devices in various domains, such as smart homes, smart cities,
smart transportation, industrial automation, agriculture, healthcare,
and so forth, have instigated the need for on-device machine learn-
ing. While traditional edge devices merely perform simple tasks
upon receiving specific requests, advances in computing power and
hardware efficiency have allowed artificial intelligence to move
towards the edge devices, and thus effectively automate processes
with minimal human intervention [33]. Therefore, researchers are
progressively deploying more complex deep learning (DL) mod-
els such as Deep Neural Networks (DNN) [4, 39, 41] at the edge
devices rather than in the cloud to improve the performance of
edge/IoT applications by reducing dependency on the network (i.e.,
bandwidth), minimizing communication cost and latency of the
application.

One of the major reasons behind the demand for on-device learn-
ing is the privacy of the user data, as the data may never need to
leave the device [5]. Since most interconnected edge devices collect
sensitive private information from users (e.g., medical information,
location, etc.), data leakage from the learning process on the user
data may raise serious privacy concerns. For instance, adversaries
may leverage DL model information (e.g., parameters, intermediate
results, and final output) to devise attacks such as membership in-
ference attacks [38] and input reconstruction attacks [8, 27] to gain
insights on valuable yet private user data. Some solutions have been
proposed throughout the years to mitigate the information leakage,
such as differential privacy [49] and homomorphic encryption [31];
however, they tend to affect the inference prediction accuracy of the
learning models and increase the computational cost significantly,
respectively.

The research community has recently leveraged hardware-based
security features, called trusted execution environment (Tee), to
massively escalate data protection and information leakage mit-
igation [15, 16, 30]. Although most of the solutions are targeted
for server systems (e.g., Intel SGX [6]), ARM has developed Trust-
Zone [46] for their processors to target mobile and edge devices.
However, the trusted memory, which is isolated from untrusted
memory, is costly and hence usually restricted in size on the IoT/edge
devices. For instance, IoT devices are provided with approximately
3–5 MB of trusted memory [1]. The trusted computing base (TCB)
of the Tee must be kept as small as possible for the edge devices to

153

https://orcid.org/0000-0001-8929-3003
https://orcid.org/0000-0002-1239-8162
https://orcid.org/0000-0002-0985-8439
https://orcid.org/0000-0002-9300-1576
https://orcid.org/0000-0003-0479-6280
https://doi.org/10.1145/3577923.3583648
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3577923.3583648
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3577923.3583648&domain=pdf&date_stamp=2023-04-24

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Md Shihabul Islam, Mahmoud Zamani, Chung Hwan Kim, Latifur Khan, and Kevin W. Hamlen

minimize the attack surface [30]. Since DL algorithms are highly
resource-intensive, it is therefore challenging to deploy security-
sensitive DL applications on the edge protected by TrustZone [53].

Prior studies mainly focus on different methodologies to opti-
mize the expensive DNN models to reduce their overall resource
requirements. Quantization [17, 43, 47] and pruning [13, 43] tech-
niques have been extensively studied. However, because of infor-
mation loss, these techniques affect the inference accuracy of the
model [18, 23]. Another approach is to statically partition a DNN
model into protected and unprotected segments and only execute
the protected segment in a Tee of an edge device in isolation from
the unprotected segment [28, 45]. Other approaches propose a sim-
ilar strategy to protect the entire DNN model, but for the cloud
environment with the help of SGX [12, 18, 23].

Table 1 compares these methodologies to our work. Static model
partitioning is unsuitable for small IoT devices with limited memory,
as it does not allow executing a model with a protected segment
larger than the trustedmemorywhere the protected DL code, model,
and data must be loaded for confidential execution. Many edge de-
vices do not have such a large memory, and only a fraction of the
memory can be used as the trusted memory in ARM TrustZone,
forcing the user to only protect a small segment of a large DNN
model. For instance, Alexnet requires at least 272𝑀𝐵 memory for
the prediction procedure, which is unfeasible for an edge device
to allocate in the limited trusted memory. Therefore, in traditional
setting, a large segment of Alexnet is executed outside of trusted
memory. The unprotected segments may disclose private and sen-
sitive information, such as the training data of the pre-trained
DL model [12, 18, 23, 45]. These limitations have motivated us to
develop a new technique to enable the confidential execution of
an entire DL model without sacrificing its inference exactness, or
having to decide which segment of the model execution is more
privacy-sensitive.

This paper hence proposes a new DL inference framework that
enables protected execution of an entire DNNmodel in an untrusted
edge device using ARM TrustZone with limited trusted memory.
Our approach does not modify the protected DL model or retrain
it, and thus does not suffer any sacrifice to the prediction accuracy.
More specifically, we propose a framework named T-Slices that
dynamically converts an unmodified DL model into units called
slices, and executes them entirely on the trusted memory. Our study
of convolutional neural networks (CNN) shows that the required
memory of some convolution and connected layers exceeds the
usual memory limit of the trusted memory [28]. We therefore devise
a mechanism to transform the layers into slices where each slice is
small enough to be loaded in the secure memory of TrustZone. We
dynamically calculate the slice for each convolution and connected
layer based on convolution layer’s input channels and connected
layer’s output neurons, respectively, so that each slice executes
independently and remains within the trusted memory limit.

T-Slices sequentially loads as many slices as possible to fit into
the trusted memory at a time, and the next slices that have a depen-
dency with the previous slices wait for their turn in the untrusted
memory in an encrypted form. This protects the entire DL inference
execution (e.g., parameters, intermediate results, and final output)

utilizing ARM TrustZone’s security features, as all the slices time-
share the limited trusted memory throughout the execution, leaving
no units unprotected.

Our approach avoids redesigning or modifying any component
of themodel, retaining the original inference’s full accuracy.We con-
duct comprehensive experiments using different CNN architectures
and datasets for image classification, then study the performance
trade-off to evaluate T-Slices with insufficient trusted memory
in TrustZone. Our results show that T-Slices can reduce layer
peak memory requirements by 72% and improve the execution
time by 29% on average compared to the baseline approach. We
empirically show that T-Slices can deploy inference services for
moderately large and complex pre-trained CNN models on ARM
TrustZone processors with limited trusted memory, ensuring data
confidentiality and preserving the original model prediction.

To summarize, we make the following contributions:
• We propose and develop a framework called T-Slices to
convert DNNs into a set of slices so that each slice can fit
into a given limited memory, thereby executing the entire
model within the memory limit without sacrificing inference
prediction accuracy.
• Our system enables protected inference of pre-trained DNN
models utilizing ARM TrustZone in an edge device with
limited trusted memory while preserving the confidentiality
of the entire model and data.
• Detailed case studies against prevalent privacy attacks assess
the effectiveness of the framework.
• We perform thorough experiments on a real device to assess
the proposed framework with different CNN architectures
and datasets for image classification, and evaluate the per-
formance tradeoffs of DL methods on edge Tees.

The rest of the paper is organized as follows. Section 2 presents
some background on ARM TrustZone and on-device learning chal-
lenges. Section 3 explains the threat model. Section 4 describes the
state-of-the-art on-device learning methodologies with TrustZone.
Section 5 introduces our proposed approach and its components.
Section 6 details the security analysis for the framework. Section 7
describes the experiments and evaluation of the framework. Sec-
tions 8 and 9 describe limitations with future work and related
work, respectively. Finally, Section 10 concludes.

2 BACKGROUND
2.1 ARM TrustZone
ARM is the pioneer in developing processors for the embedded
devices globally [48], powering over 60% of all embedded devices,
while 4.5 billion mobile devices also have ARM processors [32].
ARM TrustZone consists of hardware-level security features that
separate the physical environment into two parts: Rich Execution
Environments (Rees) and Trusted Execution Environments (Tees).
A Ree, also known as the normal world, contains the non-secure
operating system (OS) and other privileged software where security
is not the main concern because of its vast size and complexity. A
Tee, also known as the secure world, provides a restricted execution
environment where sensitive and private data can be processed;
everything outside the Tee is untrusted. More specifically, Trust-
Zone’s secure world ensures the integrity and confidentiality of an

154

Confidential Execution of Deep Learning Inference at the Untrusted Edge with ARM TrustZone CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

Table 1: Comparison with different methodologies supporting DL execution

Resource Optimization Security Preserves Edge Device Full Model Pro-
Publication Technique Features Accuracy Support tection on Edge
T-Slices (our method) DNN dynamic fragmentation TrustZone ✓ ✓ ✓
DarkneTZ [28] DNN static layer-wise partition TrustZone ✓ ✓ ✗
Confidential DL [45] DNN static layer-wise partition TrustZone ✓ ✓ ✗
Vessels [18] DNN layer-wise partition SGX ✓ ✗ ✗
Infenclave [12] DNN layer-wise partition SGX ✓ ✗ ✗
Occlumency [23] DNN convolution layer partition SGX ✓ ✗ ✗
TensorFlow Lite [43] Quantization ✗ ✗ ✓ ✗

application’s security-sensitive computation and data on a device,
where all the privileged software such as the OS is potentially mali-
cious, by constraining the OS to operate within the boundaries of
the normal world.

Our work targets Op-Tee [25] as our Tee for the ARM Trust-
Zone. It is designed to depend on the TrustZone technology for
the underlying hardware-enforced isolation mechanism. The main
goals of Op-Tee are the isolation from the non-secure OS and pro-
tection of the Trusted Applications (TA), small-footprint to reside
in limited on-chip memory as found on ARM-based systems, and
portability to support different architectures and hardware. Op-Tee
conforms to GlobalPlatform API specifications by developing Tee
Internal Core API for implementing TAs and the Tee Client API to
communicate with the Tee [24].

2.2 Challenges of Secure On-device Learning
On-device learning with edge devices represents a potential para-
digm shift in that it protects the privacy of the user data by bringing
the computation to the data instead of bringing the data to the com-
putation, which leaves the data in place instead of shipping it to
cloud services. But its realization raises several new security chal-
lenges, including protection of the user data and the compute model
on the untrusted device from the adversaries, and protection of the
computation and resource-intensive compute models on resource-
constrained edge devices.

As with cloud services, adversaries target embedded devices to
steal valuable information [32]. A pre-trained DNN model may
leak information about the original inputs, which could violate user
privacy. For example, in amembership inference attack (MIA), adver-
saries discover whether a person’s health record was used to build
a ML model that predicts a disease to infer whether that person has
the disease with high probability [38]. Input reconstruction attacks
enable adversaries to reconstruct the input from the observedmodel
(i.e., parameters) and predicted outcomes [12]. Adversaries can uti-
lize the leaked confidential information to take targeted actions
against the user (e.g., for monetary purposes). Although traditional
cryptographic approaches can preserve the model and data at rest,
they cannot safeguard them when they are used in computation,
since they need to be decrypted before any execution. More robust
cryptographic techniques, such as fully homomorphic encryption
(FHE) and secure multi-party computation (SMC), can mitigate
this complication; however they come with heavy computational
and communication costs, respectively, which is not appropriate
for edge devices [19, 29]. Prior works have therefore leveraged

ARM TrustZone security features to ensure the confidentiality
and integrity of the DL models in edge devices.

Generally, machine learning models work in two stages: training
and inference. It is the standard practice to execute the training
process in a secure cloud environment, as it requires more com-
putational power, time, and memory, and transfer the inference
process to the edge, as it is performed frequently to test instances
required by the application. However, it still may be a challenge
for the resource-constrained edge device to carry out an inference
task of a substantial pre-trained DL model securely. In fact, Tees
such as ARM TrustZone offer very limited trusted memory to
keep the memory footprint as small as possible, which is a serious
obstacle to executing the entire DL tasks. In general, the amount of
trusted memory allocated by the Op-Tee for a TA in mobile devices
containing TrustZone is roughly 16 MB [28], and even less for
low-end devices (approximately 3–5 MB) [1]. Some works have
introduced quantization and model pruning techniques to fit in
the TrustZone; however, these approaches affect the accuracy of
the classification because of the loss of information in the original
model.

3 THREAT MODEL
In this paper, we consider an adversary that seeks to surreptitiously
gain insight into sensitive user information from the edge devices.
We assume that the adversary has full control of the OS, the privi-
leged software components, and other applications in the edge de-
vice and the DL models are securely trained in a cloud environment
with private user data before being deployed in the edge device
without leaking any information during and after the deployment.
In addition, we assume that any modification to the application or
any model information can be detected in the TrustZone compo-
nent of the application. The adversary must therefore try to access
the parameters, intermediate results, and prediction outcomes of
the deployed DL models to acquire confidential information. The
adversary’s goal is to expose these contents to infer secrets, such as
the training data of the pre-trained DL model, without interfering
with the inference task.

Our focus in this work is not on protecting against side-channel
attacks, which are well studied against Tee in prior work [32].
Rather, we focus on improving the performance of DL models
for low-powered and memory-constrained edge devices utilizing
TrustZone security features. Existing defence techniques against
side-channel attacks are applicable to our system and should be em-
ployed alongside our defense for comprehensive protection. Denial-
of-Service (DoS) attacks [14] are also out of our scope.

155

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Md Shihabul Islam, Mahmoud Zamani, Chung Hwan Kim, Latifur Khan, and Kevin W. Hamlen

4 ANALYSIS OF STATE-OF-THE-ART
ON-DEVICE LEARNING SCHEMEWITH
TRUSTZONE

Numerous recent research works have proposed layer-based par-
titioning of CNNs to fit the model into restricted memory [12, 18,
28, 45]. More specifically, a CNN is partitioned into layers so that
each layer is executed one at a time with the TrustZone’s trusted
memory. Generally, each layer in a CNN depends on its parameters
(e.g., weights, biases) and the output of the previous layer, except
for the first layer where it is dependent on the input values. Since
there is no cross-dependency between any two layers, each layer
can be computed sequentially in an independent way. Thus, with
this scheme it is possible to execute CNNs with limited memory.

For a CNN, the most computationally demanding and memory-
intensive operation is the convolution operation. Most of the mem-
ory in a convolution operation is typically occupied by the input
matrix; the output matrix, kernel, or weight matrix; and a special
memory transformation matrix called im2col. The im2col transfor-
mation is an essential component of the General Matrix Multiplica-
tion (Gemm) algorithm, which is used as the convolution operator
in most of the major DL frameworks [9]. The im2col replicates a
patch of input pixels that affect the value of an output pixel to a
separate matrix. The product of this matrix of input patches and the
corresponding convolution kernel produces the output matrix. The
im2col matrix requires substantial additional memory proportional
to the kernel size and number of inputs. Therefore, this transfor-
mation may cause nontrivial overhead in memory storage and
bandwidth, and reduce data locality [2].

We assume that a convolution layer l includes the following
properties: input height 𝐻in, input width 𝑊in, number of input
channels 𝐶in, output height 𝐻out , output width𝑊out , number of
output channels 𝐶out , kernel height 𝐻𝑘 , and kernel width𝑊𝑘 . The
sizes of input I, output O, kernelK , and im2col B matrices for the
layer are:

I =𝐻in×𝑊in×𝐶in O =𝐻out×𝑊out×𝐶out

K =𝐻𝑘×𝑊𝑘×𝐶in×𝐶out B =(𝐻out×𝑊out)×(𝐻𝑘×𝑊𝑘)×𝐶in

Ml ≈I+O+K+B+𝜃

whereM is the total size of the input, output, kernel, and im2col
matrices for layer l; and 𝜃 denotes the size of other parameters,
such as bias.

Figure 1 illustrates how different components of a convolution
layer allocate memory for CNN architectures. From the figure, it is
evident that the memory overhead of the im2col transformation is
significant, especially at the beginning of the network. Moreover,
layers at the end of the network have significant filter weight sizes,
because of the increasing number of filters and channels. Thus, the
total layer size grows notably for these layers.

Figure 2 demonstrates how the required peak memory to execute
any convolution or connected layer following layer-wise partition
strategy varies for different CNN architectures for inference. We
can see from the figure that if the TA size limit is 16 MB, which is
the trusted memory size allocated for mobile devices (as discussed
in §2.2), some resource-hungry CNNs fail to execute at least one
layer in the secure world of TrustZone. Therefore, partitioning the
network by layers may only be enough to execute the whole model

1 2 3 4 5 6
0

200

400

600

800

Convolution layer

M
em

or
y
in

KB

(a) Vgg-7

1 2 3 4 5 6 7 8 9 10
0

5,000

10,000

Convolution layer

M
em

or
y
in

KB

input output weight im2col

(b) Cifar

Figure 1: Convolution layer sizes for (1a) Vgg-7 and (1b) Ci-
farmodels. Each layer size is comprised of the input, output,
weight, and im2col memory buffer sizes.

Le
Ne
t

Vg
g-7

Ci
fa
r

Tin
y D
ark

ne
t

Da
rk
ne
t R
ef

Ex
tr
ac
tio
n

Al
ex
ne
t

Inc
ep
tio
nV
3

0

10,000

20,000
M
em

or
y
oc
cu
pi
ed

in
KB

Layer slice TA Memory Limit

Figure 2: Peak memory required to execute any convolution/
connected layer in different CNN architectures. denotes
CNN is partitioned layer-wise, and denotes when CNN
execution is sliced (we discuss slice in §5). The green line
indicates the TA size limit; here it is considered as 16 MB.

for simple CNNs, such as LeNet and Vgg-7; it will be insufficient
for more complex CNNs, such as Alexnet and Darknet Ref, in an
edge setting with TrustZone.

To overcome the trusted memory constraint, some approaches
statically limit the number of layers in the TrustZone while the
other layers are performed in the untrusted normal world, exposing
secret data and model information [28, 45]. Our objective is to
ensure the confidentiality of data and model by computing all the
layers in the TrustZone trusted memory without redesigning the
network.

Further investigation reveals the lack of an optimized memory
management plan in contemporary DL implementations and de-
signs. At the start of the process, the application usually assigns the
necessary memory buffers for parameters (e.g., weights, biases) and
other intermediate activations (e.g., im2col, outputs). The buffer
sizes can be easily calculated from the hyperparameters before the
execution, and are allocated for all layers and kept in memory until

156

Confidential Execution of Deep Learning Inference at the Untrusted Edge with ARM TrustZone CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

Table 2: Peak memory consumption of different DL predic-
tors

Pre-trained Peak Mem.
Model # Layers Model Size (MB) Usage (MB)
LeNet 10 0.2 7
VGG-7 13 0.3 7
CIFAR 18 30.7 45
Tiny 22 4.2 71
Darknet 16 29.3 88
Extraction 27 93.8 163
Alexnet 14 249.5 272
Darknet53 78 159 273
Inception-v3 145 95.5 448
Yolov3 107 237 840
VGG-16 24 528 923

the entire execution is concluded. Yet, once a layer is finished exe-
cuting, the parameters and other intermediate outputs are never
reused in the later layer executions unless there exists a dependency
between the layers.

Table 2 shows the peak memory consumption of different DL
predictors with its pre-trained sizes. It indicates that a considerable
memory is allocated and retained for the entire execution. Therefore,
retaining the memory buffers without any dependency not only
engenders redundancy but also wastes critical memory usage. This
is a significant issue for memory-constraint devices, especially for
ARM TrustZone, where abundant memory is not available.

5 PROPOSED FRAMEWORK
Our goal is to mitigate the information leakage of the DNN models
in untrusted embedded devices using TrustZone from widely used
ARM processors for the embedded devices without relinquishing
prediction accuracy. To tackle the limited resource constraint of
trusted memory of the TrustZone as discussed in §4, we design a
scheme called T-Slices that dynamically transforms the traditional
layer-based DNN models into smaller fragments called slices, and
sequentially executes sets of slices in the trusted memory, thereby
protecting the entire model with TrustZone. This section presents
our framework starting with the design preliminaries, deployment
strategy, and T-Slices description.

5.1 Design Preliminaries
We assume that an edge device closer to the data source or even
the source device itself is tasked with a prediction or classification
problem. For simplicity, the edge device here denotes the source de-
vice, end-user device, or any device that is closer to the data source
where we perform the on-device learning. In addition, we assume
that the edge device contains an ARM processor and is equipped
with TrustZone security features. As a running case study, we
consider a prediction problem consisting of image classification.
Particularly, we consider CNN as the base algorithm, since it is the
breakthrough image classification model among many DNNs.

5.2 Deployment Strategy
Since the TrustZone for the edge devices suffer from limited mem-
ory constraints, and since CNN execution is computationally expen-
sive (as discussed in §2.2), the edge device is tasked with only the

1

Model
Hyperparameters

Storage

T-Slices

Memory
Management

Module

T-Slices

Crypto Module

Model
Parameters

Storage

Normal World Secure World

IR/output

DL Module

Cloud Server

1
Input, Parameters,
Hyperparameters

Partitioning information,
Output

63

7

8

5

4

Application
2

TA

Figure 3: Workflow of T-Slices with ARM TrustZone.

inference operation of CNN, where the training operation will be
executed in a cloud environment securely. The pre-trained model
contains the parameter values as well as the hyperparameter values
(i.e., structure or properties of the particular CNN). This model is
then deployed to the edge device either via a secure communication
channel from the cloud or by loading it to the device beforehand.
The parameters of the pre-trained model are always kept encrypted
in the local storage and could be updated intermittently depending
on the applications. However, the hyperparameters of the model
are kept unencrypted in the normal world since those are usually
already well-known to the public and do not disclose any sensitive
information of the input or training data [18].

Once an inference task is required, the input data (in this case
an image) and model parameters are loaded into the TrustZone’s
trusted memory, and the prediction task is carried out after the
decryption of the model parameters. Depending on the application,
the inference result could be utilized on the device or dispatched to
the cloud in an encrypted form. The following subsections address
the problem of guaranteeing the confidentiality of the model and
data when the input data, CNNmodel (i.e., parameters), and the pro-
duced intermediate representations of CNN’s inference operations
do not fit the available trusted memory of TrustZone.

5.3 T-SLICES
Our proposed technique partitions each traditional DNN layer into
segments called slices such that each slice is small enough to be
loaded and executed in the trusted memory of ARM TrustZone.
The framework dynamically determines a set of slices depending
on the memory buffer available in the secure world. Predominantly,
all the memory allocation for a particular CNN depends on the pre-
determined hyperparameters [18]. As the hyperparameters never
change during executions, we can easily derive memory require-
ments and dependencies of each layer for the execution. As a re-
sult, we can choose a number of slices such that it can fit into the
available trusted memory in TrustZone. The set of slices are then
executed in the TrustZonewith the next set of slices dependent on
the current set waiting for their turn in the unsecure memory in an
encrypted form. This executes the whole network in chunks with-
out breaking the memory constraint of TrustZone and without
affecting the final prediction result.

157

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Md Shihabul Islam, Mahmoud Zamani, Chung Hwan Kim, Latifur Khan, and Kevin W. Hamlen

Figure 3 illustrates the workflow of T-Slices with ARM Trust-
Zone for an edge device. When an application receives instruc-
tion for an inference task (step-1), it triggers our framework
(step-2). T-Slices reads the hyperparameters of the prediction
model (step-3) and communicates with the TA for initializing the
memory buffers in the TrustZone (step-4). Then, T-Slices apply
slicing technique onmodel parameters (step-5) and sends the slices
to TrustZone for decryption (step-6). Next, the decrypted slices
are feed to the forward pass of the DL model (step-7), where any
outputs or required intermediate results are stored in the trusted
memory (step-8). Steps 4 to 8 are repeated for all the slices in a
layer and all the layers in the network until the final prediction is
achieved.

For instance, in case of a convolution layer, we define a slice as
the execution of one input channel of a layer at a time in the secure
world. The intuition behind this approach is that we can reduce
the memory requirement of im2col transformation and the kernel
weights by taking only a single input channel instead of all the
input channels. With this approach, we can rewrite the equation
outlined in §4 for the memory buffer of im2col matrix as follows:

B≈(𝐻𝑜𝑢𝑡×𝑊𝑜𝑢𝑡)×(𝐻𝑘×𝑊𝑘) (1)

Figure 4 illustrates how this slicing strategy can significantly reduce
peak size of the required memory for each convolution layer of
Darknet Ref model. Figure 4a depicts peak sizes of each convo-
lutional layer, while Figure 4b shows peak size of a slice for each
convolutional layer. For example, in the figures, the 7𝑡ℎ convolution
layer occupies more than 18𝑀𝐵 of buffers, whereas a slice occupies
less than 0.5𝑀𝐵. Therefore, slicing can drastically reduce the sizes
of im2col and kernel weight matrices, which makes it straightfor-
ward to load the slices into the trusted memory sequentially and
compute the convolution operations in multiple steps.

Taking only one slice at a time for the computation does not
fully utilize the available memory in the secure world. Therefore,
we can utilize more slices in batches to optimize the unoccupied
memory and speed up the process. The full process is carried out
as follows.

For a particular CNN, we first derive the peak memory buffer
size P required for a layer to compute in the TrustZone. For the
case of convolution layers, we can compute size of input Î, kernel
K̂ , and im2col B̂ matrices, and total memory buffer size M̂ for a
slice as:

Î =

{
𝐻in×𝑊in if l = 1

I if l > 1
K̂ =𝐻𝑘×𝑊𝑘×𝐶out

B̂ =(𝐻out×𝑊out)×(𝐻𝑘×𝑊𝑘) M̂𝑙 ≈Î+O+K̂+B̂+𝜃

where 𝜃 is other parameters whose size does not depend on the
input channels (e.g., bias), and 𝑙 is the layer number in the network.
Note that the output matrix size is the same since slicing does not
affect the output matrix size, and slicing affects the size of the input,
kernel weight, and im2col. Moreover, for the first layer only we slice
the input since it is supplied from the normal world. The inputs
to later layers are the outputs of previous layers, which already
persists in the secure world.

1 2 3 4 5 6 7 8
0

5,000

10,000

15,000

Convolution layer

M
em

or
y
in

KB

(a) layer-based

1 2 3 4 5 6 7 8
0

2,000

4,000

6,000

8,000

10,000

Convolution layer

M
em

or
y
in

KB

input output weight im2col

(b) slice

Figure 4: Comparison of the input, output, weight, and im2col
memory buffer sizes for each convolution layer of the Dark-
netRefmodel for (4a) layer-based partitioning and (4b) slice
techniques.

In this scheme we can define a number of slices/channels 𝑛,
where 𝑛 ≤ 𝐶in, such that

𝑛 =

{
⌊P/M̂⌋ if P ≤ M
𝐶in otherwise

(2)

This means that we can take at most 𝑛 slices to the secure world to
compute the convolution operation without breaking the memory
constraint. After the operation at each step, the output values are
aggregated to the output matrix, so that after the final step we have
the actual output matrix, which is used as the input to the next
layer.

For the case of connected layers, there is no concept of kernels
and im2col transformation. Moreover, the number of output neu-
rons is specified in the CNN property as a hyperparameter, and the
input is transformed to a one-dimensional vector. Hence, we create
slices by output neurons for each connected layer. We can modify
the above equations to get the buffer sizes of different components
of a slice for connected layers as follows:

I =1×1×O𝑙−1 K =I×O K̂ =I

M𝑙 ≈I+O+K+𝜃 M̂𝑙 ≈I+O+K̂+𝜃

Connected layers are usually at the ends of the CNNs whose
total memory buffer sizes are dominated by the sizes of the weights,
as seen in Figure 5. We can see that slicing reduces the required
weights for each layer. So in that case, for each slice we compute
only 𝑛 output neurons following equation 2, where 𝑛 ≤ O. The
other layers of CNNs, such as the pooling (i.e., average pool, max
pool), dropout, the softmax, etc., do not need to be further frag-
mented as the buffer sizes of these layers are insignificant. Therefore,
when it comes to layers other than the convolution and connected
in the CNN, they are treated as a single layer in the trusted memory.

T-Slices defines the set of slice dynamically such that at any
point of computation the required memory buffer never overflows
the TA memory limit. Therefore, at any layer execution, the peak
memory would be the TA memory limit itself. This ensures the exe-
cution of the entire DL model in the limited memory of TrustZone.

158

Confidential Execution of Deep Learning Inference at the Untrusted Edge with ARM TrustZone CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

1 2 3
0

50,000

1 · 105
1.5 · 105

Connected layer

M
em

or
y
in

KB

(a) layer-based

1 2 3
0
20
40
60
80

Connected layer

M
em

or
y
in

KB

input output weight

(b) slice

Figure 5: Comparison of the input, output, and weight mem-
ory buffer sizes for each connected layer of the Alexnet
model for (5a) layer-based partitioning and (5b) slice tech-
niques.

However, as discussed in §4, the existing static layer-wise partition-
ing schemes lack a proper memory management plan by following
a traditional approach of allocating the necessary data buffers be-
fore the start of the execution, severely limiting the unoccupied
memory in the TrustZone. As a result, more memory-intensive
models fail to run in the TrustZone for lack of available trusted
memory.

Therefore, T-Slices follows an on-demand parameter loading
scheme as an optimized memory management plan. More specifi-
cally, instead of allocating trustedmemory buffers for all parameters
beforehand, our framework occupies trusted memory buffers for
only the segment of parameters needed for processing the current
batch of slices. Furthermore, after the current batch of slices are
processed, it replaces the memory buffers containing parameters
with the new parameters for the next batch and any intermediate
results with new intermediate results of subsequent operations. As
a result, by reusing the memory buffers, T-Slices optimizes the
trusted memory consumption for memory-constrained devices.

Algorithm 1 sketches how the T-Slices framework processes
the prediction task. Utilizing the hyperparameters we first build a
network graph in the secure world that incorporates all the layer
dependencies as well as the memory requirements. When the pre-
diction procedure starts, we go through each layer and calculate
the slice properties, which includes slice size, number of slices per
batch, and number of slices per layer. These properties are measured
based on the available trusted memory in the TrustZone for that
particular layer’s data using the network graph. We next extract the
parameters according to the number of slices per batch and load it
into the trusted memory before decryption. For the first layer only,
the input is also loaded in a similar way. For the other layers, the
input slices are considered from the previous layer’s output that is
already placed in the trusted memory. This on-demand data loading
strategy helps optimize the memory usage in the TrustZone.

After the set of slices are dispatched to the trusted memory, the
forward layer operation is executed and the intermediate output
is stored in the output matrix. Then, we fetch the next batch of
slices, replace the previous ones, and perform the next operation
in a similar way, except that the intermediate output is appended
with the previous output in the the output matrix. This procedure
continues until all the slices are processed for that particular layer.

Algorithm 1 DL Inference with T-Slices
1: procedure ForwardNetworkSW(𝑖𝑑𝑥,𝑛)
2: 𝑙 ← 𝑔.layers[idx]
3: 𝑙 .forward (𝑔)
4: if all slices are executed then
5: 𝑔.input = 𝑙 .output
6: 𝑙 .clearBuffers ()
7: if final layer then
8: return encrypt (𝑙 .output)
9: procedure ForwardNetwork(𝑔,𝑊 , 𝐼)
10: for each layer 𝑙 ∈ 𝑔.layers do
11: if 𝑙 contains parameters then
12: 𝑠 ← getSliceProperties (𝑙 .index) ⊲ from SW
13: 𝑛 ← 𝑠.numSlicePerBatch()
14: while 𝑛 ≤ 𝑠.totalSlices () do
15: 𝑝 ← readParameters (𝑊,𝑠,𝑛)
16: loadParamsSW (𝑝, 𝑙 .index) ⊲ decrypt in SW
17: if first layer then
18: 𝑖 ← readInput (𝐼 , 𝑠, 𝑛)
19: loadInputSW (𝑖, 𝑙 .index) ⊲ decrypt in SW
20: forwardNetworkSW (𝑙 .index, 𝑛)
21: 𝑛 ← 𝑛 + 𝑠.numSlicePerBatch() ⊲ process next batch
22: else
23: forwardNetworkSW (𝑙 .index, 𝑛 = −1)
24: procedure startPredict(𝐻,𝑊 , 𝐼) ⊲ 𝐻=hyper,𝑊 =param, 𝐼=input
25: load 𝐻 and encrypted𝑊 in NW ⊲ NW=Normal World
26: 𝑔← constructNetworkGraphSW (𝐻) ⊲ SW=Secure World
27: forwardNetwork (𝑔,𝑊 , 𝐼)

If there is no matrix multiplication involved for a layer operation
(e.g., pool layers), then we process the layer in a conventional way,
since memory requirement of these operations is trivial. To reuse
available trusted memory, we replace the memory buffers contain-
ing the parameters, intermediate results, and input with new data
after each batch of slice execution unless there’s a dependency
with an upcoming layer, which we can easily find out from the net-
work graph built from the hyperparameters. After the final layer,
the output probability scores are encrypted and returned to the
application.

6 INFORMATION LEAKAGE ANALYSIS
In this section we analyze how T-Slices ensures data confiden-
tiality. Before execution, the DL model is kept encrypted in the
local storage of the device maintained by the untrusted OS. Since
the model is encrypted, it cannot leak any information to the un-
trusted parties. Then, the input is received, which could be either
encrypted or unencrypted depending on the device or application.
As our framework does not produce the input, it provides options to
handle both versions of input data. Securing the input data before
it enters the framework is beyond our scope.

When the model begins the prediction procedure, it creates slices
as explained in §5.3 and dispatch the data and parameters of slices
to the secure world via the shared memory buffer. As the shared
memory buffer of ARM TrustZone is not secure and controlled
by untrusted OS, we copy the data from the shared buffer to the
trusted memory before decryption. Then, the computation for the
respective slice operation takes place, where the generated output
and any intermediate data are stored in the trusted memory. As
all the computation occurs inside the TrustZone and the results
are always kept in the secure world, this process does not leak any
information.

159

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Md Shihabul Islam, Mahmoud Zamani, Chung Hwan Kim, Latifur Khan, and Kevin W. Hamlen

Finally, the softmax layer generates the output probability values
from 0 to 1 for each of the classification labels. We return a true
boolean value only for the class label of maximum probability
and a false boolean value for the other class labels. To further
restrict the information leakage, we encrypt the prediction output
as well before passing it to the normal world. As a result, only the
encryptedmodel and prediction results are exposed to the untrusted
environment, which makes it difficult to obtain any insights about
the original data.

The following two case studies validate the effectiveness of our
framework against two prevalent privacy attacks: model inversion
(MI) [11] and membership inference attacks (MIA) [38].

6.1 Model Inversion Attack
In an MI attack, the adversary tries to reconstruct or recover the
training data or any sensitive attributes from the trained ML model.
The attacker access could be either white-box or black-box. In the
white-box setting, attackers have access to and knowledge of the
entire model, including the parameters, intermediate results, and
classification output. In the black-box setting, attackers can only
make prediction queries to the model to get the prediction results,
but they do not have any knowledge of the model.

In our case study, the attacker’s goal is to invert the full vector
of pixel intensities that corresponds to an image in the training
data. In other words, the attacker tries to reconstruct an image from
the training set by observing various details of the model. To do
so, the attacker leverages a gradient descent-based approach [11]
that defines a cost function based on the output label of the model
and some auxiliary information (e.g., error statistics, number of
instances in the training set, etc.) and iteratively transforms ran-
domly chosen candidate vectors to a reconstructed image from the
training set.

In our design, the black-box attacker can only perceive the en-
crypted DL classification scores through the queries, which signifi-
cantly limits the efficacy of estimating pixel values of an image from
the training set. Since the model parameters are kept encrypted in
the normal world and all other intermediate results are processed
in the secure world of TrustZone, the white-box MI attacker can
only perceive the encrypted data and prediction output. In addition,
the attacker does not have access to the training data informa-
tion. Therefore, the lack of useful and adequate knowledge severely
restricts the effectiveness of this attack with T-Slices.

6.2 Membership Inference Attack
In MIA, the adversary tries to discover whether a given data sample
or instance is a part of the training dataset for the particular trained
ML model. Like the MI attack, MIA also exhibits white-box and
black-box settings. The adversary proceeds using a shadow training
technique [38] that trains a set of attack models to distinguish
the target model’s behavior from the prediction output depending
on whether the input instance is a member of the training set. In
the black-box setting, the attackers only have access to the model
output, whereas the white-box attack utilizes prior knowledge, such
as statistics of the training dataset or a noisy training dataset.

In our design, the black-box MIA cannot succeed since the at-
tacker must decipher the encrypted prediction outputs first to train

Table 3: Evaluation models and datasets

Conv. Pre-trained
Model # Layers Layers Dataset Model Size (MB)
LeNet 10 2 MNIST 0.2
Cifar_Small 12 7 CIFAR10 0.08
Vgg-7 13 6 CIFAR10 0.26
Vgg-7 13 6 CIFAR100 0.3
Cifar 18 10 CIFAR10 30.7
Tiny Darknet 22 16 ImageNet1k 4.2
Extraction 27 21 ImageNet1k 93.8
Darknet Ref 16 8 ImageNet1k 29.3
Alexnet 14 5 ImageNet1k 249.5
InceptionV3 145 94 ImageNet1k 95.5

the shadow models. Moreover, the white-box attacker does not
have access to the prior knowledge about the training data and can-
not gain information from the trained model since the parameters
and other data are only deciphered in the secure memory of the
TrustZone. Thus, T-Slices defends against both attacks.

7 EVALUATION
The proposed framework is next evaluated by executing different
CNN models in the secure world with restricted trusted memory.
Recall that we execute all operations of CNN in the secure world
without modifying or redesigning any portion of the network to
conserve the original output.

7.1 Experimental Setting
We begin with a description of the dataset and CNN models we use
for the training and prediction. Also, we describe the devices used
to run the experiments.

Dataset and Models. Table 3 lists the architectural details of the
CNNs used in the evaluation, along with their pre-trained model
sizes. We use a total of three image datasets for the experiments:
Mnist [22], Cifar [21], and ImageNet [7]. These are used to train
different CNNs, including LeNet [22], Vgg-7 [39], Cifar [21], Tiny
Darknet [36], Extraction [41], Darknet Ref [35], Alexnet [20],
and InceptionV3 [42]. Particularly, we train LeNet withMnist,
Vgg-7 and Cifar with CIFAR-10 and CIFAR-100, and the others
with ImageNet1k.

Device Configuration. We use Op-Tee [25] as our Tee that allows
the development and integration of secure services and applications
under trusted execution environments. To evaluate soundness of
our system under realistic conditions, we perform experiments
with a physical STM32MP157C-DK2 board [40] from a popular
STM32MP1 series of microprocessors and a Raspberry Pi 3 Model
B (RPi3B) [34]. The STM32MP157C-DK2 contains ARM-based dual
Cortex-A7 32-bit and Cortex-M4 32-bit MPUs with 4-Gb DDR3L
memory, where the Cortex-A7 processor provides the TrustZone
security features on this board. Additionally, we utilize RPi3B to
test the prototype and evaluate the performance of T-Slices on
embedded devices. Although, we implemented and experimented
T-Slices with Cortex-A series of ARM TrustZone, the design of
our framework is not specific to Cortex-A and is applicable to any
platform that supports ARM TrustZone including Cortex-M.

160

Confidential Execution of Deep Learning Inference at the Untrusted Edge with ARM TrustZone CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

Generally, 32MB of memory is assigned to Op-Tee, where 1MB
is for Tee RAM, 1MB for non-secure RAM, and the remaining 30
MB are for Trusted Applications (TA) RAM [1]. Every TA instance
owns its private heap, stack, code, and data memory within the TA
RAM, where the stack and heap sizes are defined at build time by
macros TA_STACK_SIZE and TA_DATA_SIZE, respectively [24].

For training the CNN models, we use a system containing an
8-core i7-6700 (Skylake) processor operating at 3.4GHz, running
Ubuntu 18.04 with 64GB RAM. Our implementation is based on
both Darknet [35] and DarkneTZ [28] frameworks. Although our
T-Slices framework is independent of these two frameworks and
can be used with other DL systems as well.

7.2 Trusted Memory Consumption
We evaluate T-Slices by measuring the memory usage of the CNN
models’ inference processes entirely executed with TrustZone
and compare with the state-of-the-art static layer-wise partitioning
scheme DarkneTZ. To conduct comprehensive experiments, we
modify the baseline DarkneTZ for layer-wise execution in Trust-
Zone, but with on-demand parameter loading strategy 1. With
this optimized approach, we could successfully run more memory-
intensive CNNs entirely in TrustZone with DarkneTZ* since any
layer’s peak memory is within the TA memory limit.

Secure World Memory Usage. For the experiments, we set TA
heap size as the optimal heap memory, which is the peak memory
required to execute a single layer (or a slice for T-Slices) of a
particular CNN. That way, static layer-wise partition methods can
execute all the layers in the secure world sequentially. Similarly,
T-Slices can execute all the slices sequentially when TA heap size
is set as the largest slice size. All TAs share the TA RAM, hence
this strategy helps developers to define and allocate more trusted
memory for other TAs. Table 4 compares the peak memory sizes
required to execute a layer in DarkneTZ (with and without on-
demand parameter loading scheme) and a slice in T-Slices. For
simplicity, we take the ceiling of the numbers in the table as the TA
heap size. Figure 2 shows a graphical comparison of peak memory
usage between layer-wise partitioning following only on-demand
parameter loading approach and slicing.

It is evident from the table that our on-demand parameter loading
strategy notably reduces the memory requirement for each layer in
the secure world. For DarkneTZ*, it shows a 47% (for Alexnet) to
90% (for InceptionV3) and 96% (for LeNet) decrease in required
TA memory relative to DarkneTZ with on average 81% reduction.
Without this technique, DarkneTZ* fails to execute the whole DL
model in the secure world that occupies more than 30MB of peak
memory. For instance, form Table 4, DarkneTZ can execute only
LeNet andVgg-7 entirely in the trustedmemory of TrustZone. On
the other hand, the on-demand memory management allows Dark-
neTZ* to process more memory-intensive models in the limited
untrusted memory of TrustZone by minimizing the required peak
memory to less than TA RAM.

Table 4 demonstrates that T-Slices overall reduces the peakmem-
ory consumption by 72% on average, and achieves a 47% (for Tiny
Darknet) to 98% (for Alexnet) decrease in required TA memory
1Symbol ∗ herein refers to modified DarkneTZ with on-demand parameter loading
strategy for each layer

Table 4: Peak Memory Usage (MB) Comparison between
Layer and Slice in TrustZone

DarkneTZ DarkneTZ* T-Slices
Model per Layer per Layer per Slice % Decrease†

LeNet 7 0.25 0.1 60
Vgg-7 7 0.7 0.2 71
Cifar 45 10.5 1.25 88
Tiny Darknet 71 9.5 5 47
Darknet Ref 88 18.5 6.5 65
Extraction 163 22.6 5.6 75
Alexnet 272 144 2.75 98
InceptionV3 337 33 9 73

∗ with on-demand parameter loading scheme
† decrease from DarkneTZ* to T-Slices

relative to DarkneTZ*. For instance, the third convolution layer of
InceptionV3 needs little more than 33MB of memory, which is the
highest required memory to execute a layer for the model. Since
it exceeds the trusted RAM size, that layer will not be allowed to
execute in the secure world. On the other hand, T-Slices is able to
run all the layers of these models since slice is small-scaled and can
fit into the available limited trusted memory, and thus dynamically
execute the layer operation in multiple steps. In fact, our framework
can execute all the models in Table 4 with only 9MB of memory,
which is a 70% reduction in required TA RAM. This reduction in TA
size enables T-Slices to run on-device learning in low-end devices,
as discussed in §2.2. Moreover, it allows to keep the TA size in
TrustZone as small as possible to minimize the attack surface [30].

The above results therefore confirm that the traditional layer-
wise static DNN partitioning schemes fail to run at least a single
layer for intricate and resource-hungry DNNs (i.e., Alexnet, In-
ceptionV3) since the peak layer size exceeds the TA size limit.
We conclude that T-Slices can significantly reduce TA memory
requirement and dynamically load memory-intensive DNNs to lim-
ited trusted memory of TrustZone without altering the network
model or original prediction accuracy.

7.3 Prediction Time Overhead
We want to discover how the integration of slices alters the time
overhead of a CNN model’s inference process without affecting the
accuracy of the original result, and study the trade-off with trusted
memory size. We measure the time overhead and compare it with
DarkneTZ. We try to run all the layers of the CNN in the trusted
memory for DarkneTZ as well following the on-demand parameter
loading approach discussed before. We run each experiment 10
times with a predefined set of test images from the corresponding
dataset and report the average.

Table 5 presents the execution time measured in seconds on
STM32MP157C-DK2. The results show that T-Slices improves the
inference execution time compared to DarkneTZ* when the entire
model is executed in the secure world. T-Slices achieves at most
53% (for Cifar) and at least 2% (for Tiny Darknet) improvement
in execution time relative to DarkneTZ* with on average 29% im-
provement. The modified baseline could not execute more intricate
models (e.g., Alexnet and InceptionV3) entirely in the Trust-
Zone, since the layer peak memory surpasses the the TA RAM
limit.

161

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Md Shihabul Islam, Mahmoud Zamani, Chung Hwan Kim, Latifur Khan, and Kevin W. Hamlen

Op-Tee runs and executes the TAs in an on-chip memory (OCM)
by default, as ARM TrustZone recommends storing all the code
and data in the secure world in OCM [3]. OCM is faster and more
secure because it blocks physical attacks [51]. Consequently, it is
expensive to use in the system-on-chip platforms, and generally its
size is kept small (e.g., a few hundred KB). Our STM32MP157C-DK2
board uses an internal 708KB SRAM to load the Op-Tee and the
TAs.

Typically, Op-Tee leverages the paging mechanism to run the
secure world OS and the TAs on the limited OCM, and uses less
secure DRAM as the backing store where 4KB pages are encrypted
and integrity protected [24]. Op-Tee’s pager swaps memory pages
on-demand from/to OCM to/from DRAM with encryption/decryp-
tion and integrity check [52]. The pager efficiency depends on OCM
size and TA trusted memory size. Therefore, the expensive paging
mechanism slows the TA execution in TrustZone considerably in
favor of code and data security, especially when more memory is
allocated for the TA in the secure world. As a result, the inference
procedure of large CNN models with TrustZone incurs notable
execution time overhead with STM32MP157C-DK2, as shown in
Table 5. Nevertheless, T-Slices performs significantly faster than
the layer-based partitioning scheme since, as discussed in §7.2, it
allocates significantly less trusted memory to run the TA.

However, the TA execution time on RPi3B is notably accelerated
as shown in Table 6, since Op-Tee runs and executes the TAs in
the DRAM and the expensive paging is disabled. In fact, the results
show that the execution time of DarkneTZ* andT-Slices are similar
on RPi3B, which indicates that our framework does not incur any
prediction time overhead. As a result, T-Slices can be deployed to
an edge device in realistic setting and achieve similar performance
as the baseline.

Figure 6 shows a graphical comparison of prediction time for
DarkneTZ, DarkneTZ*, and T-Slices. Recall that, because of the
memory constraint, DarkneTZ could execute only a few layers of
the CNN model in TrustZone. We denote these range of layers as
𝑥 → 𝑦 in the figure, where 𝑥 and𝑦 are the starting and ending layer
numbers of the range that are operated within the trusted memory,
respectively. For selecting the layers we follow baseline’s approach
in the original paper, which is choosing the last layers first (i.e., from
rightmost to leftmost) in the CNN. Consequently, more compute-
intensive and memory-hungry layers are executed in the normal
world. As operations performed in the normal world is faster than
the operations performed in the secure world [44, 45], DarkneTZ
performs slightly faster than T-Slices, although, exposing sensitive
information to the adversary in the process [12].

Micro-Benchmarks. To investigate how different components of
the prediction procedure contribute to overall execution time for
T-Slices, we conduct benchmark operations. Figure 7 depicts the
benchmark results for STM32MP157C-DK2, which reports the time
for three crucial sub-operations as a percentage of total execution
time for 6 CNN architectures. The three sub-operations are: the
context switching between the normal world and secure world, the
execution of all the slices in TrustZone (i.e., forward pass), and
initializing the network in TrustZone that includes allocating/de-
allocating memory buffers, loading the parameters, and decryption

Table 5: Execution time (seconds) of different CNN models
on STM32MP157C-DK2

CNN Dataset DarkneTZ* T-Slices % Improvement
LeNet MNIST 2.44 2.10 14
Cifar_Small CIFAR10 3.49 3.24 7
Vgg-7 CIFAR10 11.93 6.38 47
Cifar CIFAR10 608.04 285.07 53
Tiny Darknet ImageNet1k 874.58 859.34 2
Extraction ImageNet1k 1244.84 615.56 51
Darknet Ref ImageNet1k 1175.69 815.55 31
Alexnet ImageNet1k ✗ 1219.31 ✗
InceptionV3 ImageNet1k ✗ 1928.41 ✗

∗with on-demand parameter loading
✗: Unable to execute due to not enough trusted memory

Table 6: Execution time (seconds) of different CNN models
on RPi3B

CNN Dataset DarkneTZ* T-Slices % Improvement
LeNet MNIST 0.092 0.092 0
Cifar_Small CIFAR10 0.19 0.19 0
Vgg-7 CIFAR10 0.309 0.307 1
Cifar CIFAR10 30.43 30.26 1
Tiny Darknet ImageNet1k 14.72 14.71 0
Extraction ImageNet1k 116.57 116.24 0
Darknet Ref ImageNet1k 18.81 18.78 0
Alexnet ImageNet1k ✗ 44.19 ✗
InceptionV3 ImageNet1k ✗ 468.1 ✗

∗with on-demand parameter loading
✗: Unable to execute due to not enough trusted memory

CIFA
R

TIN
Y

DAR
KNE

T

EXT
RAC

TIO
N

ALE
XNE

T

0

100

200

12→ 18 10→ 22 14→ 16

25→ 27 13→ 14

Ti
m
e
in

Se
co
nd

s

DarkneTZ DarkneTZ* T-Slices

Figure 6: Execution Time Comparison on RPi3B for Dark-
neTZ, DarkneTZ*, and T-Slices. 𝑥 → 𝑦 indicates the ranges
of layers executed in TrustZone for DarkneTZ.

of parameters. The other parts of the execution (e.g., file I/O) are
defined as the miscellaneous operations.

The figure shows that the operations of the slice (i.e., the for-
ward executions) dominates the overall execution time. To discover
why the forward execution takes the majority of the time for the
prediction process, we further investigate its different components.
More specifically, we observe the time overhead of Gemm opera-
tions and the im2col operations in the forward pass. Figure 8 shows
that the Gemm operation is accountable for a substantial part of
the time overhead, especially for more complex models. As a result,
we can deduce that the design of T-Slices does not significantly
contribute to the time overhead of the inference process in the
device; rather, the major portion of the overhead comes from the
conventional DL operators and Op-Tee’s secure paging mechanism
with STM32MP157C-DK2.

162

Confidential Execution of Deep Learning Inference at the Untrusted Edge with ARM TrustZone CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

0 20 40 60 80 100
LeNet
Vgg-7
Cifar

Tiny Darknet
Extraction
Darknet Ref

% of total execution time

TA context switching between REE-TEE
forward execution of slices in TEE
initializing + loading + decryption of parameters in TEE
misc. operations

Figure 7: Benchmark results showing the % of total execution
time occupied by different components

0 20 40 60 80 100
LeNet
Vgg-7
Cifar

Tiny Darknet
Extraction
Darknet Ref

% of forward execution time

% Gemm % im2col misc. operations

Figure 8: Benchmark results showing the % of total forward
execution time occupied by Gemm and im2col

8 LIMITATIONS & FUTUREWORK
Although our approach facilitates secure execution of some resource-
intensive CNNmodels in memory-constrained TrustZone of ARM
edge devices, there exist other CNNs that are prepared for systems
with vast resources and that remain unsuitable for embedded de-
vices. For example, vgg-16 [39] has a pre-trained model size of
528MB and peakmemory of approximately 923MB, and Yolov3 [37]
has a peak memory of approximately 840MB. In future work, we
plan to investigate the deployment of these complex models on
edge/IoT devices. Moreover, in this paper, we specifically target and
experiment with the CNN architectures from DL models. However,
we aim to apply our method to other DL architectures, such as
Recurrent Neural Networks (RNNs) in the future.

The susceptibility of Tees to side-channel attacks is well estab-
lished by prior studies. These attacks, based on power consumption,
operation timing, or memory cache usage, may leak sensitive infor-
mation and endanger data privacy [26, 50]. For this particular case,
these attacks could leak sensitive DL information such as model pa-
rameters and intermediate representations of learning operations.
Therefore, in the future we plan to investigate the capability of
these attacks on ARM TrustZone and our framework.

9 RELATEDWORK
Recent research has focused on secure on-device learning without
sacrificing prediction accuracy, especially on resource-constraint
embedded devices. A preliminary study on the limited capacity
of trusted memory in TrustZone introduced theoretical models
to partition CNN execution to cope with this problem [45]. More
recently, DarkneTZ [28] proposed a layer-based partitioning mech-
anism with TrustZone to securely execute CNN layers in the

secure world. Although it executes simple CNN models (e.g., Vgg-
7) entirely in the TrustZone’s limited memory, more complex
CNNs (e.g., Alexnet) only execute the last few layers in the secure
world, since the TrustZone’s limited memory cannot handle the
memory-intensive layers of these models. However, layers that exe-
cute outside of the secure world expose information to the untrusted
normal world, raising data privacy concerns. In contrast, T-Slices
executes the whole CNN model in the resource-constraint Trust-
Zone to protect model parameters, intermediate results, and even
the outputs from untrusted access, and thus ensure data privacy
with preserving model prediction accuracy.

In recent years, cryptographic approaches, such as homomorphic
encryption [31] and SMC [29], have gained considerable attention
for designing privacy-preserving ML solutions. FHE tends to be
costly due to inevitable requirements of time and space, which
may not be a feasible solution for real-time systems and edge de-
vices [19]. Moreover, SMC-based solutions to ensure data privacy in
ML-based approaches incur unwanted additional communication
costs, which escalate the latency of edge applications [29]. Another
popular technique to mitigate the private data leakage of ML mod-
els is differential privacy [49]. Nevertheless, it usually suffers from
prediction accuracy loss and always induces a trade-off between
statistical accuracy and data privacy [10]. In our approach, we
leverage the Tees for edge devices to protect DL models and their
entire execution without affecting the accuracy, and thus effectively
preserve privacy.

10 CONCLUSION
In this paper, we address the memory restriction of DL models for
embedded devices and propose a framework called T-Slices to fit
every layer of memory-intensive DL models into the secure world
of an ARM TrustZone-based embedded device that has limited
trusted memory. We perform protected inference of pre-trained
DL models utilizing the security features of TrustZone that help
to protect the confidentiality of data and the model parameters.
Our framework does not change or redesign any component of the
original DLmodel, thereby retaining the model’s original prediction
accuracy without any information loss. A series of case studies
demonstrate the effectiveness of the framework against different
privacy attacks. We evaluate T-Slices with various CNN models
on real embedded devices containing TrustZone and study the
trade-off between execution time and memory consumption. The
results show that T-Slices on average achieves 72% reduction in
peak memory consumption and 29% improvement in execution
time.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful feedback.
This work was supported in part by the Texas A&M Engineering Ex-
periment Station on behalf of its SecureAmerica Institute, DARPA
awards FA8750-19-C-0006 and N6600121C4024, NSF awards DMS-
1737978, DGE-2039542, OAC-1828467, OAC-1931541, and DGE-
1906630, ONR awards N00014-21-1-2654, N00014-17-1-2995, and
N00014-20-1-2738, ARO award W911NF2110032, and IBM faculty
award (Research).

163

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Md Shihabul Islam, Mahmoud Zamani, Chung Hwan Kim, Latifur Khan, and Kevin W. Hamlen

REFERENCES
[1] Julien Amacher and Valerio Schiavoni. 2019. On the Performance of ARM Trust-

Zone. In Proc. IFIP Int. Conf. Distributed Applications and Interoperable Systems.
133–151.

[2] Andrew Anderson, Aravind Vasudevan, Cormac Keane, and David Gregg. 2017.
Low-memory Gemm-based Convolution Algorithms for Deep Neural Networks.
arXiv Preprint 1709.03395 (2017).

[3] ARM. 2009. ARM Security Technology: Building a Secure System using TrustZone
Technology. White paper PRD29-GENC-009492C. ARM.

[4] Mamoun A Awad and Latifur R Khan. 2007. Web navigation prediction using
multiple evidence combination and domain knowledge. IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and Humans 37, 6 (2007), 1054–
1062.

[5] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and
Jason Roselander. 2019. Towards Federated Learning at Scale: System Design. In
Proc. Machine Learning and Systems.

[6] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016, 086 (2016).

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
geNet: A Large-scale Hierarchical Image Database. In Proc. IEEE Conf. Computer
Vision and Pattern Recognition.

[8] Alexey Dosovitskiy and Thomas Brox. 2016. Inverting Visual Representations
with Convolutional Networks. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition. 4829–4837.

[9] Marat Dukhan. 2019. The Indirect Convolution Algorithm. arXiv Preprint
1907.02129 (2019).

[10] Vitaly Feldman, Konstantin Kakaes, Katrina Ligett, Kobbi Nissim, Aleksandra
Slavkovic, and Adam Smith. 2020. Differential Privacy: Issues for Policymakers.
White paper. Simons Institute Theory of Computing, University of California at
Berkeley.

[11] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model Inversion
Attacks That Exploit Confidence Information and Basic Countermeasures. In
Proc. ACM Conf. Computer and Communications Security. 1322–1333.

[12] Zhongshu Gu, Heqing Huang, Jialong Zhang, Dong Su, Hani Jamjoom, Ankita
Lamba, Dimitrios Pendarakis, and Ian Molloy. 2018. Confidential Inference Via
Ternary Model Partitioning. arXiv Preprint 1807.00969 (2018).

[13] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding. In Proc. Int. Conf. Learning Representations.

[14] IBM X-Force® Research. 2017. The Weaponization of IoT Devices. www.ibm.
com/downloads/cas/6MLEALKV.

[15] Md Shihabul Islam, Mustafa Safa Ozdayi, Latifur Khan, and Murat Kantarcioglu.
2020. Secure IoT data analytics in cloud via Intel SGX. In 2020 IEEE 13th Interna-
tional Conference on Cloud Computing (CLOUD). IEEE, 43–52.

[16] Md Shihabul Islam, Harsh Verma, Latifur Khan, and Murat Kantarcioglu. 2019.
Secure real-time heterogeneous iot data management system. In 2019 first IEEE
international conference on trust, privacy and security in intelligent systems and
applications (TPS-ISA). IEEE, 228–235.

[17] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and
Training of Neural Networks for Efficient Integer-arithmetic-only Inference. In
Proc. IEEE Conf. Computer Vision and Pattern Recognition. 2704–2713.

[18] Kyungtae Kim, Chung Hwan Kim, Junghwan “John” Rhee, Xiao Yu, Haifeng Chen,
Dave Tian, and Byoungyoung Lee. 2020. Vessels: Efficient and Scalable Deep
Learning Prediction on Trusted Processors. In Proc. ACM Sym. Cloud Computing.
462–476.

[19] Çetin Kaya Koç. 2020. Formidable Challenges in Hardware Implementations of
Fully Homomorphic Encryption Functions for Applications in Machine Learning.
In Proc. ACM Workshop Attacks and Solutions in Hardware Security.

[20] Alex Krizhevsky. 2014. One Weird Trick for Parallelizing Convolutional Neural
Networks. arXiv Preprint 1404.5997 (2014).

[21] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning Multiple Layers of Features
from Tiny Images. Technical Report. University of Toronto.

[22] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based Learning Applied to Document Recognition. Proc. IEEE 86, 11 (1998),
2278–2324.

[23] Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu, Youngki Lee,
Fengyuan Xu, Chenren Xu, Lintao Zhang, and Junehwa Song. 2019. Occlumency:
Privacy-preserving Remote Deep-learning Inference Using SGX. In Proc. Annual
Int. Conf. Mobile Computing and Networking.

[24] Linaro. 2022. OP-TEE Architecture. https://optee.readthedocs.io/en/latest/
architecture/index.html.

[25] Linaro. 2022. Open Portable Trusted Execution Environment. www.op-tee.org.
[26] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan

Mangard. 2016. Armageddon: Cache Attacks on Mobile Devices. In Proc. USENIX

Security Sym. 549–564.
[27] Aravindh Mahendran and Andrea Vedaldi. 2015. Understanding Deep Image

Representations By Inverting Them. In Proc. IEEE Conf. Computer Vision and
Pattern Recognition. 5188–5196.

[28] Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias
Leontiadis, Andrea Cavallaro, and Hamed Haddadi. 2020. DarkneTZ: Towards
Model Privacy at the Edge Using Trusted Execution Environments. In Proc. Int.
Conf. Mobile Systems, Applications, and Services. 161–174.

[29] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, andManuel Costa. 2016. Oblivious Multi-party Machine
Learning on Trusted Processors. In Proc. USENIX Security Sym. 619–636.

[30] Heejin Park, Shuang Zhai, Long Lu, and Felix Xiaozhu Lin. 2019. StreamBox-TZ:
Secure Stream Analytics at the Edge with TrustZone. In Proc. USENIX Annual
Technical Conf.. 537–554.

[31] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho Moriai.
2017. Privacy-preserving Deep Learning Via Additively Homomorphic Encryp-
tion. IEEE Trans. Information Forensics and Security 13, 5 (2017), 1333–1345.

[32] Sandro Pinto and Nuno Santos. 2019. Demystifying ARM TrustZone: A Compre-
hensive Survey. ACM Computing Surveys 51, 6 (2019), 1–36.

[33] Qualcomm. 2020. We Are Making AI Ubiquitous. www.qualcomm.com/news/
onq/2020/06/we-are-making-ai-ubiquitous.

[34] Raspberry Pi. 2022. Raspberry Pi 3 Model B. https://www.raspberrypi.com/
products/raspberry-pi-3-model-b/.

[35] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks in C.
pjreddie.com/darknet.

[36] Joseph Redmon. 2022. Tiny Darknet. pjreddie.com/darknet/tiny-darknet.
[37] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement.

arXiv Preprint 1804.02767 (2018).
[38] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-

bership inference attacks against machine learning models. In 2017 IEEE sympo-
sium on security and privacy (SP). IEEE, 3–18.

[39] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-scale Image Recognition. In Proc. Int. Conf. Learning Representa-
tions.

[40] ST Microelectronics. 2022. Discovery Kit with STM32MP157C MPU. www.st.
com/en/evaluation-tools/stm32mp157c-dk2.html.

[41] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going Deeper with Convolutions. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition. 1–9.

[42] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the Inception Architecture for Computer Vision. In Proc.
IEEE Conf. Computer Vision and Pattern Recognition. 2818–2826.

[43] TensorFlow. 2022. TensorFlow Lite. www.tensorflow.org/lite.
[44] Florian Tramer and Dan Boneh. 2018. Slalom: Fast, verifiable and private exe-

cution of neural networks in trusted hardware. arXiv preprint arXiv:1806.03287
(2018).

[45] Peter M. VanNostrand, Ioannis Kyriazis, Michelle Cheng, Tian Guo, and Robert J.
Walls. 2019. Confidential Deep Learning: Executing Proprietary Models on
Untrusted Devices. arXiv Preprint 1908.10730 (2019).

[46] Johannes Winter. 2008. Trusted Computing Building Blocks for Embedded
Linux-based ARM TrustZone Platforms. In Proc. ACM Workshop Scalable Trusted
Computing. 21–30.

[47] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. 2016.
Quantized Convolutional Neural Networks for Mobile Devices. In Proc. IEEE
Conf. Computer Vision and Pattern Recognition. 4820–4828.

[48] I-Ling Yen, Jayabharath Goluguri, Farokh Bastani, Latifur Khan, and John Linn.
2002. A component-based approach for embedded software development. In
Proceedings Fifth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing. ISIRC 2002. IEEE, 402–410.

[49] Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, and Stacey Truex. 2019.
Differentially Private Model Publishing for Deep Learning. In Proc. IEEE Sym.
Security & Privacy. 332–349.

[50] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y. Thomas Hou. 2016.
TruSpy: Cache Side-channel Information Leakage From the Secure World on
ARM Devices. IACR Cryptology ePrint Archive 2016 (2016).

[51] Shijun Zhao, Qianying Zhang, Yu Qin, Wei Feng, and Dengguo Feng. 2019. Min-
imal Kernel: An Operating System Architecture for TEE to Resist Board Level
Physical Attacks. In Proc. Int. Sym. Recent Advances in Intrusion Detection. 105–
120.

[52] Shijun Zhao, Qianying Zhang, Yu Qin, Wei Feng, and Dengguo Feng. 2019.
SecTEE: A Software-based Approach to Secure Enclave Architecture Using TEE.
In Proc. ACM Conf. Computer and Communications Security. 1723–1740.

[53] Li Zhou, Hao Wen, Radu Teodorescu, and David HC Du. 2019. Distributing Deep
Neural Networks with Containerized Partitions at the Edge. In Proc. USENIX
Workshop Hot Topics in Edge Computing.

164

www.ibm.com/downloads/cas/6MLEALKV
www.ibm.com/downloads/cas/6MLEALKV
https://optee.readthedocs.io/en/latest/architecture/index.html
https://optee.readthedocs.io/en/latest/architecture/index.html
www.op-tee.org
www.qualcomm.com/news/onq/2020/06/we-are-making-ai-ubiquitous
www.qualcomm.com/news/onq/2020/06/we-are-making-ai-ubiquitous
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
pjreddie.com/darknet
pjreddie.com/darknet/tiny-darknet
www.st.com/en/evaluation-tools/stm32mp157c-dk2.html
www.st.com/en/evaluation-tools/stm32mp157c-dk2.html
www.tensorflow.org/lite

	Abstract
	1 Introduction
	2 Background
	2.1 ARM TrustZone
	2.2 Challenges of Secure On-device Learning

	3 Threat Model
	4 Analysis of State-of-the-Art On-device Learning Scheme with TrustZone
	5 Proposed Framework
	5.1 Design Preliminaries
	5.2 Deployment Strategy
	5.3 T-SLICES

	6 Information Leakage Analysis
	6.1 Model Inversion Attack
	6.2 Membership Inference Attack

	7 Evaluation
	7.1 Experimental Setting
	7.2 Trusted Memory Consumption
	7.3 Prediction Time Overhead

	8 Limitations & Future Work
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

