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Motivation 

 Threat detection and investigation is an important security 
solution in enterprises 

Agents Data collector DB 
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Alert 
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Motivation 

 Alert investigation 

 

 

 

 

 

 Process 

─ Query 1: select processes that accessed sensitive data in DB 

─ Query 2: check whether unsigned program executed probing 
commands 

─ Query 3: get source process that opened/created unsigned 
program 

─ … 

 

query 

revise 

query 

revise 

… 

May take a long execution time 
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Challenges 

─ Long waiting time for even a single query 

•A huge amount of data in DB 

> 100GB/200 computers/day 

•Query multiple hosts’ or multiple days’ data 

Some advanced attack behaviors may span over several months 

Check other machines if the same suspicious behaviors exist 

─ Making interactive querying difficult 

 
Searching … 

… 
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query 
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Challenges 

 Optimize the query execution 

o > 30% improvement (parallel execution) 

 Some sub-queries may still take a long time even with 
optimization 

o Especially when querying multiple hosts’/days’ data 

o Bounded by hardware (bottleneck) 

 Sub-query costs: DB connection, query parsing, thread overhead 

 Hardware limitation: CPU, disk, etc. 

1-host query into 4 sub-queries 1-host query into 8 sub-queries 
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Insight 

 

 

 

 

 

 

 Process 

─ Query 1: select processes that accessed sensitive data in DB 

─ Query 2: check whether unsigned program executed probing 
commands 

─ Query 3: get source process that opened/created unsigned 
program … 

  

 Partial results are very helpful to make a decision! 

 

Pause and revise query when seeing unsigned program 
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Approach 

 Progressive Querying 

─ Progressively update results during the execution instead of 
until the end 

Results     

  10s 

Results  

   20s 

Results  

   30s 

30s 

Quality metrics 

o Q.1: results updated within the update 
cycle 

o Q.2: small overhead on the total 
execution time 
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Progressive Querying: straightforward solutions 

 Naïve solution 
─ Partition the query into sub-queries, 

each with time window 1s 

• e.g., 1-day query = 3600*24 subqueries  

─ >28hrs (1 worker thread) 

─ 6.7hrs (5 worker threads) 

 Q.1: update fast 

 Q.2: unacceptable overhead 

More intelligent solutions are desired! 

• Ideal: sub-queries finish exactly before each update cycle 

• Practical: average finish time is close to update cycle 

 Whole-query update 

─ # sub-queries = # worker 
threads 

─ 532s (1 worker thread) 

─ 214s (5 worker threads) 

 Q.1: only 1 update 

 Q.2: low overhead 
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Progressive Querying 

 Intelligent solutions 

─ Query partition 

• Fixed workload 

• Fixed time window 

• Adaptive learning 

 
Fixed Strategy: cache mechanism / 

system dynamics are not considered 

o Event processing rate (#events/s): 
cache >> non cache 

o Sub-queries’ execution time varies 
much  average time is far from 
update frequency cache 

non-cache 

Sub-queries 
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Progressive Querying 

 Adaptive learning  spatial & temporal 

─ Goal: adjust event processing rate dynamically 

• Cache 

• Non-cache 

─ Gradient descent algorithm 

• Learn different event processing rates 

 Reflect the system runtime environment 
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Results: Progressive Querying 

Average sub-query execution time 

 Comparison 

─ Fixed time window 

─ Fixed workload 

─ Adaptive learning 

 Adaptive learning  

─ Closest proximity of average sub-query 
time to update frequency 

─ E.g., with update cycle 10s, if we have 
1000 sub-queries to execute, it can 
save us > 3 hours compared to fixed 
strategy 
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Results: Progressive Querying 

Response rate 

 Comparison 

─ Fixed time window 

─ Fixed workload 

─ Adaptive learning 

 Adaptive learning  

─ Closest proximity of average sub-query 
time to update frequency 

─ Best response rate: result update at each 
cycle 



13 

Results: Progressive Querying 

Overhead 

 Comparison 

─ Fixed time window 

─ Fixed workload 

─ Adaptive learning 

 Adaptive learning  

─ Closest proximity of average sub-query 
time to update frequency 

─ Best response rate: result update at each 
cycle 

─ Comparable overhead 
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Conclusion 

 A systematic approach to optimize query execution on suspicious system 
behaviors 

─ Parallel execution 

─ Performance: sequential with cost >= Sequential >= Parallel >= Time window 

 

 A comprehensive comparison on progressively processing return results 

─ Fixed time window (processing rate & data rate) 

─ Fixed workload (all hosts/single host) 

─ Adaptive (different learning rates)  best performance 
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