
1
www.nec-labs.com

Progressive Processing of System-
Behavioral Query

Jiaping Gui∗, Xusheng Xiao‡, Ding Li∗, Chung Hwan Kim∗, and Haifeng Chen∗

∗NEC Laboratories America, Inc.

‡Case Western Reserve University

12/12/2019

2

Motivation

 Threat detection and investigation is an important security
solution in enterprises

Agents Data collector DB

Monitoring Storing
Alert

Investigation

Defense

3

Motivation

 Alert investigation

 Process

─ Query 1: select processes that accessed sensitive data in DB

─ Query 2: check whether unsigned program executed probing
commands

─ Query 3: get source process that opened/created unsigned
program

─ …

query

revise

query

revise

…

May take a long execution time

4

Challenges

─ Long waiting time for even a single query

•A huge amount of data in DB

> 100GB/200 computers/day

•Query multiple hosts’ or multiple days’ data

Some advanced attack behaviors may span over several months

Check other machines if the same suspicious behaviors exist

─ Making interactive querying difficult

Searching …

…

query

revise

query

revise

…

5

Challenges

 Optimize the query execution

o > 30% improvement (parallel execution)

 Some sub-queries may still take a long time even with
optimization

o Especially when querying multiple hosts’/days’ data

o Bounded by hardware (bottleneck)

 Sub-query costs: DB connection, query parsing, thread overhead

 Hardware limitation: CPU, disk, etc.

1-host query into 4 sub-queries 1-host query into 8 sub-queries

6

Insight

 Process

─ Query 1: select processes that accessed sensitive data in DB

─ Query 2: check whether unsigned program executed probing
commands

─ Query 3: get source process that opened/created unsigned
program …

 Partial results are very helpful to make a decision!

Pause and revise query when seeing unsigned program

7

Approach

 Progressive Querying

─ Progressively update results during the execution instead of
until the end

Results

 10s

Results

 20s

Results

 30s

30s

Quality metrics

o Q.1: results updated within the update
cycle

o Q.2: small overhead on the total
execution time

t1 t2 t3 t2 t3 …

init

② ③

t3 t1

④

⑤

①

⑥

8

Progressive Querying: straightforward solutions

 Naïve solution
─ Partition the query into sub-queries,

each with time window 1s

• e.g., 1-day query = 3600*24 subqueries

─ >28hrs (1 worker thread)

─ 6.7hrs (5 worker threads)

 Q.1: update fast

 Q.2: unacceptable overhead

More intelligent solutions are desired!

• Ideal: sub-queries finish exactly before each update cycle

• Practical: average finish time is close to update cycle

 Whole-query update

─ # sub-queries = # worker
threads

─ 532s (1 worker thread)

─ 214s (5 worker threads)

 Q.1: only 1 update

 Q.2: low overhead

9

Progressive Querying

 Intelligent solutions

─ Query partition

• Fixed workload

• Fixed time window

• Adaptive learning

Fixed Strategy: cache mechanism /

system dynamics are not considered

o Event processing rate (#events/s):
cache >> non cache

o Sub-queries’ execution time varies
much  average time is far from
update frequency cache

non-cache

Sub-queries

10

Progressive Querying

 Adaptive learning  spatial & temporal

─ Goal: adjust event processing rate dynamically

• Cache

• Non-cache

─ Gradient descent algorithm

• Learn different event processing rates

 Reflect the system runtime environment

11

Results: Progressive Querying

Average sub-query execution time

 Comparison

─ Fixed time window

─ Fixed workload

─ Adaptive learning

 Adaptive learning

─ Closest proximity of average sub-query
time to update frequency

─ E.g., with update cycle 10s, if we have
1000 sub-queries to execute, it can
save us > 3 hours compared to fixed
strategy

12

Results: Progressive Querying

Response rate

 Comparison

─ Fixed time window

─ Fixed workload

─ Adaptive learning

 Adaptive learning

─ Closest proximity of average sub-query
time to update frequency

─ Best response rate: result update at each
cycle

13

Results: Progressive Querying

Overhead

 Comparison

─ Fixed time window

─ Fixed workload

─ Adaptive learning

 Adaptive learning

─ Closest proximity of average sub-query
time to update frequency

─ Best response rate: result update at each
cycle

─ Comparable overhead

14

Conclusion

 A systematic approach to optimize query execution on suspicious system
behaviors

─ Parallel execution

─ Performance: sequential with cost >= Sequential >= Parallel >= Time window

 A comprehensive comparison on progressively processing return results

─ Fixed time window (processing rate & data rate)

─ Fixed workload (all hosts/single host)

─ Adaptive (different learning rates)  best performance

15

www.nec-labs.com

