\Orchestrating a brighter world N E‘

Progressive Processing of System-
Behavioral Query
12/12/2019

Jiaping Gui*, Xusheng Xiao*, Ding Li*, Chung Hwan Kim*, and Haifeng Chen*
*NEC Laboratories America, Inc.
*Case Western Reserve University

NEC Laboratories
et Amerlca

www.nec-labs.com



Motivation

= Threat detection and investigation is an important security
solution in enterprises

cisco (gMehtee  (V/symantec  splunk>

Security

Monitoring Storing @ @ Alert ——
@@@l’\/!
Investigation

f.'.'ﬂ\e

Agents Data collector DB Defense

2 "Ec lan%mgﬁgg \Orchestrating a brighter world NE‘



Motivation

= Alert investigation query

RER [ \
©) @) : (6) revise revise
z emait @ a.xls Xg _open® g
N

= Process
— Query 1: select processes that accessed sensitive data in DB

— Query 2: check whether unsigped program executed probing

commands

— Query 3: get source process|that opened/created unsigned
program

B May take a long execution time ]

3 "Ec lan%mgﬁgg \Orchestrating a brighter world NE‘



Challenges

— Long waiting time for even a single query @
* A huge amount of data in DB @

> > 100GB/200 computers/day @ @ @ EEE

* Query multiple hosts’ or multiple days’ data
» Some advanced attack behaviors may span over several months
» Check other machines if the same suspicious behaviors exist

— Making interactive querying difficultc\ ™ ey

Searching ...
[ Y X el
-— X revise revise

4 "Ec lanoAr?\}gﬁgg \Orchestrating a brighter world NE‘

query



Challenges

time window

——
& parallel

| -+ sequential (no initialization cost)
=% sequential (with initialization cost)

400

= Optimize the query execution

o > 30% improvement (parallel execution) %D

1-host query into 4 sub-queries 1-host query into 8 sub-queries

# Thread

= Some sub-queries may still take a long time even with
optimization

o Especially when querying multiple hosts’/days’ data
o Bounded by hardware (bottleneck)

** Sub-query costs: DB connection, query parsing, thread overhead

** Hardware limitation: CPU, disk, etc.

5  NECLaboratories
rontoss e AIENICA

\Orchestrating a brighter world NE‘



Insight

= Partial results are very helpful to make a decision!

emall a.xls @ open@ acces
=@
= Process

— Query 1: select processes that accessed sensitive data in DB

— Query 2: check whether unsigped program executed probing

commands
— Query 3: get source process|that opened/created unsigned

program ... L
| Pause and revise query when seeing unsigned program ]
6 N

anoratories
Amenca \Orchestrating a brighter world NE‘



Approach

" Progressive Querying
— Progressively update results during the execution instead of

until the end
4
y Results
“*Quality metrics m— Re;;'ts 30s
S
o Q.1: results updated within the update 10s
30s

cycle

o Q.2: small overhead on the total
execution time

7 "Ec lan%mgﬂgg \Orchestrating a brighter world NE‘



Progressive Querying: straightforward solutions

= Naive solution = Whole-query update

— Partition the query into sub-queries,
each with time window 1s

* e.g., 1-day query = 3600*24 subqueries
— >28hrs (1 worker thread)
— 6.7hrs (5 worker threads)

— # sub-queries = # worker
threads

— 532s (1 worker thread)
— 214s (5 worker threads)

> Q.1: update fast > Q.1: only 1 update
> 0.2: unacceptable overhead > Q.2: low overhead

More intelligent solutions are desired!
« Ideal: sub-queries finish exactly before each update cycle
« Practical: average finish time is close to update cycle

8  NEC Lahoratorjes

America \Orchestrating a brighter wor ld NE‘



Progressive Querying

= Intelligent solutions
— Query partition
_[ * Fixed workload
* Fixed time window
* Adaptive learning

s Fixed Strategy: cache mechanism /
system dynamics are not considered

o Event processing rate (#events/s):
cache >> non cache

o Sub-queries’ execution time varies
much =2 average time is far from
update frequency

9  NEC Lahoratories
e America

Sub-queries

—=— Fitting (training)
-&x- Fitting (testing)
= Gradient descent (1.0e-14)

-&-  Gradient descent (1.0e-13)
- Gradient descent (3.0e-13)




Progressive Querying

= Adaptive learning > spatial & temporal

— Goal: adjust event processing rate dynamically
* Cache
* Non-cache

— Gradient descent algorithm
* Learn different event processing rates

> Reflect the system runtime environment

10 "Ec lan%mgﬁgg \Orchestrating a brighter wor ld NE‘



Results: Progressive Querying

= Comparison

Average sub-query execution time (s)

— Fixed time window Strategy o B i0s T 155 1 20s
_ Fixed workload ADWD (5.0E-4) | 2.14 | 529 | 1071 | 145 | 18.34
. . FIXWD 54 | 121 | 215 | 28.9 | 3479

— Adaptive learning FIXTW 501 | 1337 | 24.46 | 335 | 41.89

g Average sub-query execution time
Adaptive learning

— Closest proximity of average sub-query
time to update frequency

— E.g., with update cycle 10s, if we have
1000 sub-queries to execute, it can
save us > 3 hours compared to fixed
strategy

11 "Ec lanoArlﬁarEgﬁgg \Orchestrating a brighter world NE‘



Results: Progressive Querying

—e— adaptive workload
- - fixed workload

= Comparison

— Fixed time window ;@‘,8_‘--+" fixed time window
— Fixed workload ﬁ%—
— Adaptive learning 2 & 1
g §E_
&
: : S -
Adaptive learning o
— Closest proximity of average sub-query ° %
time to update frequency Update Rate
— Best response rate: result update at each Response rate
cycle

12 NEC lan%mgﬂgg \Orchestrating a brighter world NE‘



Results: Progressive Querying

- Comparlson Strate Overhead (%)
— Fixed time window &Y 28 98 10s | 15s | 20s
. ADWD (5.0E-4) | 53.82 | 21.99 | 7.96 | 437 | 3.79
— Fixed workload FIXWD 19.23 | 10.19 | 7.15 | 413 | 4.16
— Adaptive learning FIXTW 2299 | 9.46 | 529 | 548 | 3.35
Overhead

gAdaptive learning

— Closest proximity of average sub-query
time to update frequency

— Best response rate: result update at each
cycle

— Comparable overhead

13  NEC Laboratories

America \.Orchestrating a brighter world NE‘



14

Conclusion

= A systematic approach to optimize query execution on suspicious system
behaviors

— Parallel execution
— Performance: sequential with cost >= Sequential >= Parallel >= Time window

= A comprehensive comparison on progressively processing return results
— Fixed time window (processing rate & data rate)
— Fixed workload (all hosts/single host)
— Adaptive (different learning rates) - best performance

NEC Laboratories

Amenca \Orchestrati ing a brighter wor Id NE‘



15 "Ec lanl}{mgﬁgg \Orchestrating a brighter world NE‘

n for innovation




! Orchestrating -

Www.nec-labs.com




